THE UNIVERSITY
 of LIVERPOOL

JANUARY 2006 EXAMINATIONS

MMath: Year 4

LINEAR DIFFERENTIAL OPERATORS IN MATHEMATICAL PHYSICS

TIME ALLOWED : Two Hours and a Half

INSTRUCTIONS TO CANDIDATES

Full marks will be awarded for complete answers to FIVE questions. Only the best 5 answers will be taken into account.

THE UNIVERSITY of LIVERPOOL

1. Let $u(x, t)$ be a solution of the following initial boundary value problem for the wave equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}(x, t)-4 \frac{\partial^{2} u}{\partial t^{2}}(x, t)=0, \quad x>0, t>0, \tag{1}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
\frac{\partial u}{\partial x}(0, t)=0, t>0 \tag{2}
\end{equation*}
$$

and the initial conditions

$$
\begin{gather*}
\frac{\partial u}{\partial t}(0, t)=0, x>0, \tag{3}\\
u(x, 0)=\left\{\begin{array}{cc}
-|x-3|+1, \text { when } 2 \leq x \leq 4, \\
-|x-7|+1, \text { when } 6 \leq x \leq 8, \\
0, & \text { otherwise }
\end{array}\right. \tag{4}
\end{gather*}
$$

The initial value $u(x, 0), \quad x>0$, is shown in the figure.
(a) Determine the solution $u(x, t)$ of the initial boundary value problem (1)-(4).
(b) Determine $\max _{t>0, x>0}(u(x, t))$. Find all points $\left(x_{*}, t_{*}\right)$ such that

$$
u\left(x_{*}, t_{*}\right)=\max _{t>0, x>0}(u(x, t)) .
$$

[20 marks]
2. (a) Consider the function

$$
f(\mathbf{x})=\frac{1}{2 \pi} \log \left(|\mathbf{x}|^{-1}\right), \mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2} .
$$

Verify that

$$
\Delta f(x)+\delta(x)=0
$$

in the sense of distributions. Here $\delta(\mathbf{x})$ is the Dirac delta-function, and $\Delta=\partial^{2} / \partial x_{1}^{2}+\partial^{2} / \partial x_{2}^{2}$ is Laplace's operator in two dimensions.
(b) Find a solution of the boundary value problem

$$
\begin{gathered}
\Delta u(\mathbf{x})+\delta(\mathbf{x}-\mathbf{A})=0, \mathbf{x} \in\left\{\left(x_{1}, x_{2}\right): x_{1}>0, x_{2}>0\right\} \\
u\left(x_{1}, 0\right)=0, \quad x_{1} \geq 0 \\
u\left(0, x_{2}\right)=0, \quad x_{2} \geq 0
\end{gathered}
$$

where $\mathbf{A}=(3,1)$ (see the diagram).
[20 marks]
3. Let $u(x, t)$ be a smooth solution of the heat equation

$$
\frac{\partial u}{\partial t}(x, t)-\frac{\partial^{2} u}{\partial x^{2}}(x, t)=0, \quad x \in(0, l), t>0
$$

and assume that $u(x, t)$ satisfies the following boundary conditions

$$
u(0, t)=0, \frac{\partial u}{\partial x}(l, t)=0, \text { for all } t>0
$$

Prove that for all possible initial condition and for any $t_{2} \geq t_{1}>0$ the function $u(x, t)$ satifies the inequality

$$
\int_{0}^{l} u^{2}\left(x, t_{1}\right) d x-\int_{0}^{l} u^{2}\left(x, t_{2}\right) d x \geq 0
$$

[20 marks]
4. (a) Let $f(x)$ be a bounded function such that $f(x) \rightarrow 0$ as $|x| \rightarrow \infty$.

Verify that the function

$$
u(x, y)=\frac{1}{\pi} \int_{-\infty} \infty \frac{y f(s) d s}{(s-x)^{2}+y^{2}}
$$

represents a solution of the boundary value problem

$$
\begin{align*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} & =0, \quad \mathbf{x} \in \mathbf{R}, y>0 \tag{5}\\
u(x, 0) & =f(x), \quad x \in \mathbf{R} \tag{6}
\end{align*}
$$

(b) Let

$$
f(x)=\left\{\begin{array}{cc}
-|x|+2, & -2 \leq x \leq 2, \\
0, & \text { otherwise }
\end{array}\right.
$$

Find a solution $u(x, y)$ of (5), (6) such that $u(x, y) \rightarrow 0$ as $x^{2}+$ $y^{2} \rightarrow \infty$.
[20 marks]
5. (a) Give the definition of convolution $(f * g)$ of distributions f and g.
(b) Let $f \in \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)$ be a distribution. Prove that

$$
\delta * f=f * \delta=f
$$

where $\delta(\mathbf{x})$ is the Dirac delta function.
(c) Let $L_{N}\left(D_{x}\right)=\sum_{|\alpha| \leq N} a_{\alpha} D_{x}^{\alpha}$ be a linear differential operator of order N with constant coefficients a_{α}. Here $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ is the multi-index; $\alpha_{j} \geq 0, j=1, \ldots, n ;|\alpha|=\alpha_{1}+\ldots+\alpha_{n}$,

$$
D_{x}^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \partial x_{n}^{\alpha_{n}}} .
$$

Let $G(\mathbf{x})$ solve the partial differential equation

$$
L_{N}\left(D_{x}\right) G(\mathbf{x})=\delta(\mathbf{x})
$$

Prove that a solution $u(\mathbf{x})$ of the equation

$$
L_{N}\left(D_{x}\right) u(\mathbf{x})=f(\mathbf{x})
$$

can be represented in the form

$$
u(\mathbf{x})=(G * f)(\mathbf{x}) .
$$

[20 marks]
6. Consider the second-order partial differential equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+4 y \frac{\partial^{2} u}{\partial y^{2}}=0 \tag{7}
\end{equation*}
$$

In the half-planes $\{(x, y): x \in \mathbf{R}, y>0\}$ and $\{(x, y): x \in \mathbf{R}, y<0\}$, give the classification of (7), and by introducing new variables $\xi=$ $\xi(x, y)$ and $\eta=\eta(x, y)$ reduce (7) to a canonical form.
[20 marks]
7. Find a solution $u(x, t)$ of the initial boundary value problem

$$
\begin{array}{r}
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}=0, \quad x \in(0,1), t>0 \\
u(x, 0)=2 x^{2}, \quad x \in(0,1), \\
\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(1, t)=1, \quad \text { for all } t>0 . \tag{8}
\end{array}
$$

[20 marks]

