Full marks may be obtained for complete answers to four questions.

Credit will only be given for the best four answers.

Useful formulae

1) For any two random variables, U and W, the covariance between U and $W, \operatorname{cov}(U, W)$, is defined by

$$
\operatorname{cov}(U, W)=E(U W)-E(U) E(W)
$$

and correlation, $\operatorname{corr}(U, W)$, between U and W is defined by

$$
\operatorname{corr}(U, W)=\operatorname{cov}(U, W) /\{V(U) V(W)\}^{\frac{1}{2}}
$$

2) If $\left\{x_{t}\right\}(t=0, \pm 1, \ldots$,$) is a weakly stationary process with covariance function$ $R(u)(t, u=0, \pm 1, \ldots)$ its spectral density function, $f(\lambda)$, is defined by

$$
f(\lambda)=(2 \pi)^{-1} \sum_{u=-\infty}^{\infty} R(u) \exp (-i u \lambda)
$$

for all values of λ for which the sum on the right hand exists.

1(a) An information signal may be represented by the sequence

$$
x_{t}=A \sin (\omega t+\Theta) \quad(t=0, \pm 1, \ldots)
$$

where ω and A are fixed constants and Θ is a uniformly distributed random variable with probability density function

$$
p_{\Theta}(\theta)= \begin{cases}\frac{1}{2 \pi} & -\pi \leq \theta \leq \pi \\ 0 & \text { elsewhere }\end{cases}
$$

Show that $\left\{x_{t}\right\}$ is weakly stationary with covariance function

$$
\operatorname{cov}\left(x_{t}, x_{t+u}\right)=\frac{1}{2} A^{2} \cos (\omega u) \quad(t, u=0, \pm 1, \ldots) . \quad[12 \text { marks }]
$$

(b) It has been suggested, however, that due to transmission noise, the amplitude, A, may not be treated as fixed and the signal actually being transmitted is y_{t}, where

$$
y_{t}=A \sin (\omega t+\Theta) \quad(t=0, \pm 1, \ldots)
$$

and A is a random variable, independent of Θ, following a Rayleigh distribution with probability density function

$$
p_{A}(a)=\left\{\begin{array}{cc}
a \exp \left(-\frac{1}{2} a^{2}\right) & a>0, \\
0 & a \leq 0 .
\end{array}\right.
$$

Show that $\left\{y_{t}\right\}$ is still stationary but with covariance function

$$
\operatorname{cov}\left(y_{t}, y_{t+u}\right)=\cos (\omega u) \quad(t, u=0, \pm 1, \ldots) . \quad[5 \text { marks }]
$$

[N.B. You may assume without proof the results that $E(A)=\sqrt{\frac{\pi}{2}}, \quad E\left(A^{2}\right)=2$.]
(c) Suppose instead that the information signal being transmitted is z_{t}, where

$$
z_{t}=C_{t} \sin (\omega t+\Theta) \quad(t=0, \pm 1, \ldots)
$$

$\left\{C_{t}\right\}$, independent of Θ, is a stationary process with mean 0 and an absolutely summable covariance function $R_{C}(u)$. Show that $\left\{z_{t}\right\}$ is also stationary with covariance function

$$
R_{z}(u)=\operatorname{cov}\left(z_{t}, z_{t+u}\right)=\frac{1}{2} R_{C}(u) \cos (\omega u) \quad(t, u=0, \pm 1, \ldots) . \quad[3 \text { marks }]
$$

(d) Show also that the spectral density function, $f_{z}(\lambda)$, of $\left\{z_{t}\right\}$ is related to that of $\left\{C_{t}\right\}$ by

$$
f_{z}(\lambda)=\frac{1}{4}\left\{f_{C}(\lambda-\omega)+f_{C}(\lambda+\omega)\right\},
$$

Question 1 continued overleaf

Q1 continued

where $f_{C}(\lambda)$ denotes the spectral density function of $\left\{C_{t}\right\}$.

Deduce that if ω is close to $0, f_{z}(\lambda)$ will be close to $\frac{1}{2} f_{C}(\lambda)$.
[N.B. $\quad \sin (A+B)=\sin A \cos B+\cos A \sin B$, $\cos (A+B)=\cos A \cos B-\sin A \sin B$.

2(a) Suppose that $\left\{x_{t}\right\}$ is a discrete-time (weakly) stationary process with mean μ_{x} and covariance function $R_{x}(u)$ and let $\left\{y_{t}\right\}$, independent of $\left\{x_{t}\right\}$, be a different stationary process with mean μ_{y} and covariance function $R_{y}(u)$. Let

$$
w_{t}=x_{t}+y_{t} \quad(t=0, \pm 1, \ldots)
$$

be a new process obtained by aggregating x_{t} and y_{t} for each t. Show that $\left\{w_{t}\right\}$ is also stationary with covariance function $R_{w}(u)$, where

$$
R_{w}(u)=R_{x}(u)+R_{y}(u) \quad(u=0, \pm 1, \ldots)
$$

(b) Let $\left\{x_{t}\right\}(t=0, \pm 1, \ldots)$ be an autoregressive process of order 1

$$
x_{t}=\alpha x_{t-1}+\varepsilon_{t}, \quad|\alpha|<1
$$

where $\left\{\mathcal{\varepsilon}_{l}\right\}$ is a purely random sequence of uncorrelated random variables, each with mean 0 and variance σ^{2}. Show that $\left\{x_{t}\right\}$ is weakly stationary with covariance function

$$
R_{x}(u)=\alpha^{|u|} R_{x}(0) \quad(t, u=0, \pm 1, \ldots),
$$

where $R_{x}(0)=\sigma^{2} /\left(1-\alpha^{2}\right)$ denotes the variance of $\left\{x_{t}\right\}$.
[8 marks]
(c) Suppose that the weekly sales of a certain product manufactured by a major company for a given area, called Region 1, could be described, after a suitable transformation, by an autoregressive process of order 1 , $\left\{x_{t}\right\}$, but those in a neighbouring area, called Region 2, by an independent autoregressive process of order $1,\left\{y_{t}\right\}$, where

$$
y_{t}=\beta y_{t-1}+\delta_{t}, \quad|\beta|<1
$$

and $\left\{\delta_{t}\right\}$, independent of $\left\{\varepsilon_{t}\right\}$, is also a purely random sequence of uncorrelated random variables, each with mean 0 and variance τ^{2}. Let

$$
w_{t}=x_{t}+y_{t} \quad(t=0, \pm 1, \ldots)
$$

be the process obtained by aggregating $\left\{x_{t}\right\}$ and $\left\{y_{t}\right\}$.
Write down the covariance function, $R_{w}(u)$ of $\left\{w_{t}\right\}$.
(d) Show that for all $u \geq 2, R_{w}(u)$ satisfies the equation

$$
R_{w}(u)-(\alpha+\beta) R_{w}(u-1)+\alpha \beta R_{w}(u-2)=0 \quad(\mathrm{u}=2,3, \ldots) . \quad[6 \text { marks }]
$$

Show also that $R_{w}(1)$ does not satisfy this last equation.

Provide an interpretation of this last result for the behaviour of $\left\{w_{t}\right\}$.

3(a) Suppose that $\left\{x_{t}\right\}(t=0, \pm 1, \ldots)$ is a stationary process with mean 0 , an absolutlety summable covariance function, $R_{x}(u)$, and the spectral density function $f_{x}(\lambda)$. Let

$$
y_{t}=\sum_{j=-q}^{q} c_{j} x_{t-j} \quad(t=0, \pm 1, \ldots)
$$

be a 'filtered' series obtained from x_{t}; here $q \geq 0$ is an integer and the c_{j} are some real constant whose values do not depend on t. Show that $\left\{y_{t}\right\}$ is also stationary with covariance function

$$
R_{y}(u)=\sum_{j=-q}^{q} \sum_{k=-q}^{q} c_{j} c_{k} R_{x}(u+k-j),
$$

and spectral density function

$$
f_{y}(\lambda)=|C(\lambda)|^{2} f_{x}(\lambda)
$$

where

$$
C(\lambda)=\sum_{j=-q}^{q} c_{j} e^{-i j \lambda}
$$

denotes the transfer function of the filter and $|C(\lambda)|$ denotes the Gain function of the filter.
[6 marks]
(b) Consider the following two filters:

1) $y_{t}=\frac{1}{4} x_{t}+\frac{1}{2} x_{t-1}+\frac{1}{4} x_{t-2}$;
2) $y_{t}=\frac{1}{3} \sum_{j=-1}^{1} x_{t-j}$.

Find the transfer functions, $C_{1}(\lambda)$, and $C_{2}(\lambda)$, say, of these two filters and show that their gain functions, $G_{l}(\lambda)$ and $G_{2}(\lambda)$, are given by

$$
\begin{aligned}
& G_{1}(\lambda)=\left|C_{1}(\lambda)\right|=\frac{1}{2}(1+\cos \lambda), \\
& G_{2}(\lambda)=\left|C_{2}(\lambda)\right|=\frac{1}{3}\left|\frac{\sin \frac{3}{2} \lambda}{\sin \frac{1}{2} \lambda}\right| .
\end{aligned}
$$

[13 marks]

Sketch $G_{l}(\lambda)$ and $G_{2}(\lambda)$ for $\lambda \in[0, \pi]$ and describe effects these two filters will have on the behaviour of the output series y_{t}.
4. A wide variety of financial time series may be approximated, to second order, that is, in terms of the behaviour of their correlation structure, by a Random Walk model, which postulates that the observed process, $\left\{x_{t}\right\}(t=1,2, \ldots)$ follows the model

$$
x_{t}=x_{t-1}+\varepsilon_{t},
$$

where $\left\{\varepsilon_{t}\right\}$ is a sequence of uncorrelated random variables, each with mean 0 and variance σ^{2}, and x_{0} may be treated as a fixed constant.

Demonstrate that, for each $t \geq 1, x_{t}$ may be written as

$$
\begin{equation*}
x_{t}=\sum_{j=0}^{t-1} \varepsilon_{t-j}+x_{0} . \tag{2marks}
\end{equation*}
$$

Hence show that for each fixed t and all $k=0,1, \ldots, t$, the covariance function of $\left\{x_{t}\right\}$ is given by

$$
\begin{equation*}
\operatorname{cov}\left(x_{t}, x_{t-k}\right)=(t-k) \sigma^{2} \quad(k=0,1, \ldots, t, t=1,2, \ldots) \tag{5marks}
\end{equation*}
$$

Write down the correlation function of $\left\{x_{t}\right\}$ and deduce that if k is small relative to t

$$
\operatorname{corr}\left(\mathrm{x}_{\mathrm{t}}, x_{t-k}\right) \approx 1, \quad k>0 .
$$

Let $\Delta x_{t}=x_{t}-x_{t-1}$ denote the first differences of $\left\{x_{t}\right\}(t>1)$ and

$$
y_{t}=\Delta x_{t}-\Delta x_{t-1}=x_{t}-2 x_{t-1}+x_{t-2} \quad(t=2,3, \ldots)
$$

denote the second differences of $\left\{x_{t}\right\}$. Show that $\left\{y_{t}\right\}$ follows a moving average process of order 1

$$
\begin{equation*}
y_{t}=\varepsilon_{t}-\varepsilon_{t-1} . \tag{1mark}
\end{equation*}
$$

Find the covariance function of $\left\{y_{t}\right\}$ and show that its correlation function is given by

$$
\operatorname{corr}\left(y_{t}, y_{t-k}\right)=\left\{\begin{array}{cc}
1 & k=0 \tag{6marks}\\
-\frac{1}{2} & k= \pm 1 \\
0 & |k|>1
\end{array}\right.
$$

Explain why $\left\{y_{t}\right\}$ is stationary. Is it invertible?
Let

$$
R_{y}^{(T)}(u)=\frac{1}{T} \sum_{t=1}^{T-u} y_{t} y_{t+u} \quad(u \geq 0)
$$

denote the standard 'positive definite' estimator of the covariance function, $R_{y}(u)$, of $\left\{y_{t}\right\}$, based on an observed realisation, $y_{l}, \ldots, y_{T}, \quad T>1$, of $\left\{y_{t}\right\}$.

Question 4 continued overleaf

Q4 continued

Demonstrate that

$$
E\left\{R_{y}^{(T)}(0)\right\}=2 \sigma^{2}, \quad E\left\{R_{y}^{(T)}(1)\right\}=-\left(\frac{T-1}{T}\right) \sigma^{2}
$$

and deduce that whereas $R_{y}^{(T)}(0)$ provides an unbiased estimator of $R_{y}(0), R_{y}^{(T)}(1)$ provides a biased estimator. Find the bias, $B\left\{R_{y}^{(T)}(1)\right\}=E\left\{R_{y}^{(T)}(1)\right\}-R_{y}(1)$, of $R_{y}^{(T)}(1)$ in estimating $R_{y}(1)$ and show that $R_{y}^{(T)}(1)$ nevertheless provides an asymptotically unbiased estimator of $R_{y}(1)$.
5. Let $\left\{x_{t}\right\}(t=0, \pm 1, \ldots)$ be an autoregressive process of order 2 :

$$
x_{t}=x_{t-1}+\alpha x_{t-2}+\varepsilon_{t}, \quad-1<\alpha<0,
$$

where $\left\{\varepsilon_{t}\right\}$ is a sequence of uncorrelated random variables, each with mean 0 and variance σ^{2}. The process admits an infinite moving average representation

$$
x_{t}=\sum_{j=0}^{\infty} b(j) \varepsilon_{t-j}, \quad b(0)=1,
$$

where $b(j)$ is the coefficient of z^{j} in the expansion of $\left(1-z-\alpha z^{2}\right)^{-1}$ in non-negative powers of z, that is,

$$
\sum_{j=0}^{\infty} b(j) z^{j}=\left(1-z-\alpha z^{2}\right)^{-1}
$$

(a) Show that the correlation function, $r(u)$, of $\left\{x_{t}\right\}$ satisfies the Yule-Walker equations

$$
\begin{align*}
& r(1)=(1-\alpha)^{-1} \tag{1}\\
& r(2)=r(1)+\alpha \tag{2}\\
& r(u)=r(u-1)+\alpha r(u-2) \quad(u \geq 3) . \tag{3}
\end{align*}
$$

(b) Deduce that $r(1)$ satisfies the inequality

$$
0.5<\mathrm{r}(1)<1 .
$$

Suppose that only $x_{1}, \ldots x_{T}, T>1$, have been observed and α is unknown. Let

$$
\hat{r}(u)=\sum_{t=1}^{T-u} x_{t} x_{t+u} / \sum_{t=1}^{T} x_{t}^{2} \quad(u=1,2, \ldots)
$$

denote a 'positive-definite' estimator of $r(u)$.
(c) Two different methods of estimating α from $\hat{r}(1)$ and $\hat{r}(2)$ are under consideration:
(1) Estimate α by $\tilde{\alpha}$, where $\tilde{\alpha}$ is based only on $\hat{r}(1)$ and it is obtained by using the relation (1) above, that is, by solving the equation

$$
\hat{r}(1)=(1-\tilde{\alpha})^{-1} .
$$

(2) Estimate α by $\hat{\alpha}$, where $\hat{\alpha}$ is based on both $\hat{r}(1)$ and $\hat{r}(2)$ and it is obtained by using the relation (2) above, that is, by

$$
\hat{\alpha}=\hat{r}(2)-\hat{r}(1) .
$$

Show that

$$
\tilde{\alpha}=\{\hat{r}(1)-1\} / \hat{r}(1) .
$$

Question 5 continued overleaf

Q 5 continued

By taking some trial values of $\hat{r}(1)$, or otherwise, deduce that if $\hat{r}(1) \leq 0.5, \widetilde{\alpha}$ does not lie in the range of value of α for which the process is stationary.

On the assumption that x_{1} and x_{2} may be treated as fixed, find the least-squares estimator, $\hat{\alpha}^{*}$, say, of α based on x_{3}, \ldots, x_{T}.

Explain why, for large values of T, the difference between $\hat{\alpha}$ and $\hat{\alpha}^{*}$ may be expected to be small.

6(a) Explain what is meant by stylised features of a financial time series. Briefly describe three such features as applicable to changes in share prices.
(b) Consider the model

$$
x_{t}=\varepsilon_{t}+\beta \varepsilon_{t-1} \varepsilon_{t-2}, \quad t=0, \pm 1, \ldots
$$

where $\left\{\varepsilon_{t}\right\}$ is a sequence of independent identically distributed random variables, each with mean 0 , variance σ^{2}. Show that $\left\{x_{t}\right\}$ is a purely random process with variance $\sigma^{2}\left(1+\sigma^{2} \beta^{2}\right)$, that is,

$$
\operatorname{cov}\left(x_{t}, x_{t-s}\right)=\left\{\begin{array}{cl}
\sigma^{2}\left(1+\sigma^{2} \beta^{2}\right), & s=0, \text { all } t \\
0 & s>0, \text { all } t .
\end{array}\right.
$$

Are x_{t} and x_{t-1} mutually independent? Explain giving reasons.
Comment on the relevance of this model for financial data.
Consider the Autoregressive Conditional Heteroscedastic model of order 1, $\mathrm{ARCH}(1)$ model,

$$
x_{t}=\sigma_{t} \varepsilon_{t},
$$

where $\left\{\varepsilon_{t}\right\}$ is a sequence of independent random variables, each with mean 0 and variance 1 , and the variance, σ_{t}^{2}, of x_{t} depends upon x_{t-1}^{2}, the square of the immediate past observation, as follows:

$$
\sigma_{t}^{2}=\gamma+\alpha x_{t-1}^{2} \quad \gamma>0,0<\alpha<1
$$

On writing

$$
x_{t}^{2}=\sigma_{t}^{2}+x_{t}^{2}-\sigma_{t}^{2},
$$

show that, in this model, x_{t}^{2} is postulated to follow an autoregressive model of order 1

$$
x_{t}^{2}=\gamma+\alpha x_{t-1}^{2}+v_{t},
$$

where $v_{t}=\sigma_{t}{ }^{2}\left(\varepsilon_{t}^{2}-1\right)$.

Explain why

$$
E\left(v_{t}\right)=0, \text { all } t
$$

Show that

$$
\begin{aligned}
& E\left(x_{t}\right)=0, \text { all } t \\
& V\left(x_{t}\right)=E\left(x_{t}^{2}\right)=\frac{\gamma}{1-\alpha}, \text { all } t .
\end{aligned}
$$

7. A linear time series model with non-Normal innovations has been suggested as a suitable model for financial data. For investigating this hypothesis, suppose that the observed time series is a (part) realization of a discrete-time moving average process of order1:

$$
x_{t}=\varepsilon_{t}+\beta \varepsilon_{t-1}, \quad|\beta|<1,
$$

in which $\left\{\varepsilon_{t}\right\}$ is a sequence of independent identically distributed, not necessarily Normally distributed, random variables, each with mean 0 variance 1 and finite fourth moment $\lambda=E\left(\varepsilon_{t}{ }^{4}\right)$.
Let

$$
y_{t}=x_{t}^{2} .
$$

Show that for each fixed t, where t is an integer,
a) $E\left(y_{t}\right)=1+\beta^{2}$;
b) $\quad E\left(y_{t}{ }^{2}\right)=\left(1+\beta^{4}\right) \lambda+6 \beta^{2}$;
c) $\quad E\left(y_{t} y_{t-1}\right)=\lambda \beta^{2}+1+\beta^{2}+\beta^{4}$;
d) $\quad E\left(y_{t} y_{t-k}\right)=\left(1+\beta^{2}\right)^{2}, \quad$ all $k \geq 2$.

Hence deduce that
e) $\quad V\left(y_{t}\right)=(\lambda-3)\left(1+\beta^{4}\right)+2\left(1+\beta^{2}\right)^{2}$;
f) $\operatorname{cov}\left(y_{t}, y_{t-1}\right)=(\lambda-3) \beta^{2}+2 \beta^{2}$;
g) $\quad \operatorname{cov}\left(y_{t}, y_{t-k}\right)=0, \quad$ all $k \geq 2$.

Write down the correlation function, $\operatorname{corr}\left(y_{t}, y_{t-k}\right)$, for all $k \geq 1$.
Now let

$$
\kappa=\frac{E\left(x_{t}^{4}\right)}{\left\{E\left(x_{t}^{2}\right)\right\}^{2}}
$$

denote the coefficient of Kurtosis of $\left\{x_{t}\right\}$.
Deduce that
h) $\kappa=\frac{\left(1+\beta^{4}\right) \lambda+6 \beta^{2}}{\left(1+\beta^{2}\right)^{2}}$;

Question 7 continued overleaf

Q 7 continued

i) $(\kappa-3)$ is related to $(\lambda-3)$ as follows:

$$
(\kappa-3)=\frac{(\lambda-3)\left(1+\beta^{4}\right)}{\left(1+\beta^{2}\right)^{2}}
$$

[2 marks]

Hence prove that

$$
\frac{(\kappa-3) \theta+2 \rho^{2}}{\kappa-3+2}=\operatorname{corr}\left(y_{t}, y_{t-1}\right),
$$

where $\rho=\beta /\left(1+\beta^{2}\right)=\operatorname{corr}\left(x_{t}, x_{t-1}\right)$ and $\theta=\beta^{2} /\left(1+\beta^{4}\right)$.

Show that if $\kappa=3$, implying the common distribution of $\left\{\varepsilon_{t}\right\}$ is Normal,

$$
\begin{equation*}
\operatorname{corr}\left(y_{t}, y_{t-1}\right)=\rho^{2}, \tag{2marks}
\end{equation*}
$$

Comment on the behaviour of corr $\left(y_{t}, y_{t-1}\right)$ when $\kappa>3$ and explain the relevance of this result for financial data.

