- 1. (a) State the weak law of large number (WLLN) and the ordinary central limit theorem (CLT). [4 marks]
 - (b) State the Chebychev inequality and use it to prove a WLLN. [4 marks]
 - (c) Let X_1, \ldots, X_n be a random sample of size n from the uniform distribution on (0, 1) with probability density function

$$f(x) = I(0 < x < 1).$$

- i. Compute the mean and variance of this distribution. [2 marks]
- ii. Compute $P[X_1 \leq 0.25]$. [2 marks]
- iii. Let $\bar{X} = (\sum_{i=1}^{n} X_i)/n$. For n = 100. [3 marks]
- iv. Let $X_{(1)}$ denote the minimum of $\{X_1, X_2, ..., X_n\}$. For n = 100, compute $P[X_{(1)} \leq 0.25]$. [5 marks]
- 2. Let X and Y be two random variables.
 - (a) Under appropriate conditions (to be stated by you), prove that

 $Variance{X} = Variance{E[X|Y]} + E{Variance[X|Y]}.$

You may use without proof the result that $E\{E[X|Y]\} = E(X)$. [6 marks]

- (b) State and prove the Rao-Blackwell theorem. Explain how can it be used to improve upon (reduce) the variance of an unbiased estimator. [8 marks]
- (c) The total number of misprints per page in a book can often be modelled as a Poisson random variable X with parameter λ and the probability mass function (pmf) given by

$$f(x,\lambda) = e^{-\lambda} \lambda^x / x!, \ x = 0, 1, 2, \dots$$

Suppose that the publisher is interested in estimating the probability of only one misprint per page.

- i. Obtain an unbiased estimator of P[X = 1] based on X_1 only. [3 marks] [Hint: Use indicator function.]
- ii. Use the Rao-Blackwell theorem with sufficient statistic $\sum_{i=1}^{n} X_i$ to obtain an improved estimator of P[X = 1]. You don't need to show the explicit expression of the estimator in terms of $\sum_{i=1}^{n} X_i$. [3 marks]

3. Suppose X_1, \ldots, X_n is a random sample of size *n* from the Poisson distribution with parameter $\lambda > 0$ and the probability mass function (pmf) given by

$$f(x,\lambda) = e^{-\lambda} \lambda^x / x!, \ x = 0, 1, 2, \dots$$

- (a) Prove directly using the definition of sufficiency that $\sum_{i=1}^{n} X_i$ is a sufficient statistic for λ . Here you are not allowed to use the factorisation theorem. However, you can use the fact that the sum of independent Poisson random variables is Poisson with parameters added. [10 marks]
- (b) Write down the expressions for the mean and variance of the sample mean \bar{X} in terms of λ . [2 marks]
- (c) Prove directly using the definition of completeness that $\sum_{i=1}^{n} X_i$ is a complete sufficient statistic for λ . Hence obtain the uniformly minimum variance unbiased estimator (UMVUE) of λ . [8 marks]
- (a) State the Cramer-Rao lower bound (CRLB) for the variance of an unbiased estimator based on a random sample of size n. You must explain your notations clearly. [5 marks]
 - (b) Let θ be the proportion of the population who support a certain political issue, $0 < \theta < 1$. Let X_1, \ldots, X_n denote a random sample of size n from the population where $X_i = 1$ if the *i*-th person supports the issue and $X_i = 0$ if the *i*-th person does not support the issue. Note that the probability mass function (pmf) of each X_i is given by

$$f(x,\theta) = \theta^x (1-\theta)^{1-x} I(x=0,1).$$

Compute the mean and variance of each X_i . [3 marks]

- (c) Suppose we are interested in estimating the proportion θ based on X_1, \ldots, X_n .
 - i. Derive the CRLB (Cramer-Rao lower bound) for estimating $\tau(\theta) = \theta$. [6 marks]
 - ii. Show that \overline{X} is the uniformly minimum variance unbiased estimator (UMVUE) of θ . [2 marks]
 - iii. What is the UMVUE of $\tau(\theta) = \theta/2$? [2 marks]
 - iv. Suppose that n = 5 and the first and the fifth person support the issue while others do not. Compute the UMVU estimate of θ and $\tau(\theta) = \theta/2$. [2 marks]

5. Let X_1, \ldots, X_n denote a random sample of size *n* from the uniform distribution on $(0, \theta)$ with the following probability density function (pdf)

$$f(x,\theta) = \theta^{-1}I(0 < x \le \theta),$$

where $\theta > 0$ is the unknown parameter.

- (a) Sketch the likelihood function and find the maximum likelihood estimator (MLE) of θ . [5 marks]
- (b) i. Find the cumulative distribution function (cdf) of X_1 . [2 marks]
 - ii. Derive an expression for the cdf of the MLE. [3 marks]
 - iii. Hence find the probability density function (pdf) of the MLE. [2 marks]
 - iv. Find the mean of the MLE. Is the MLE unbiased for θ ? If not, construct an unbiased estimator of θ based on the MLE. [3 marks]
- (c) Show that the MLE converges in probability to θ . [5 marks]

6. The lifetime, X, of a certain electronic component is modelled by the exponential distribution with the probability density function (pdf)

$$f(x) = \frac{1}{\theta} e^{-x/\theta} I(x > 0),$$

where $\theta > 0$ is the unknown parameter. Let X_1, \dots, X_n be independent and identically distributed with the above pdf. Suppose we want to test $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$, where θ_0 and θ_1 are known and $\theta_0 < \theta_1$.

- (a) Use the Neyman-Pearson Lemma to show that the critical region of the most powerful test is of the form $\{\sum_{i=1}^{n} x_i \ge k\}$, where k is a constant. [4 marks]
- (b) It can be shown that $Y = 2X/\theta$ has a chi-squared distribution with 2 degrees of freedom (d.f.) where X has the above exponential distribution. Using 'sum of independent chi-squares is a chi-squared random variable with d.f.'s added', show that the most powerful size α test has critical region

$$\{\sum_{i=1}^{n} x_i \ge k\}, \text{ where } P[\chi_{2n}^2 \ge 2k/\theta_0] = \alpha.$$

[3 marks]

- (c) In a particular study, suppose that n = 20 and we are interested in testing $H_0: \theta_0 = 3$ against $H_1: \theta_1 = 5$ at 5% level. Find the value of k. Here and elsewhere you may use the fact that for large d.f. $d, \chi_d^2 \approx N[d, 2d]$. [4 marks]
- (d) If the observed value is $\sum_{i=1}^{n} x_i = 75$, what is your conclusion? [1 mark]
- (e) Compute the approximate power of your test at $\theta_1 = 5$. [4 marks]
- (f) Give an expression for a two-sided $100(1 \alpha)\%$ confidence interval for θ in terms of the percentiles of the χ^2_{40} distribution. [3 marks]
- (g) Compute a two-sided 95% confidence interval for θ based on the observed value of $\sum_{i=1}^{n} x_i = 75$. Here you may use $\chi^2_{40,0.025} = 59.34$ and $\chi^2_{40,0.975} = 24.43$, where $\chi^2_{d,p}$ is defined as $P[\chi^2_d > \chi^2_{d,p}] = p$. [1 mark]

7. Suppose that the service-time, X, for a customer in a bank (in minutes) is an exponential random variable with parameter $\theta > 0$ and with the following probability density function (pdf)

$$f(x|\theta) = \theta e^{-\theta x} I(x > 0).$$

Suppose x_1, \ldots, x_n are the observed service times of randomly selected *n* customers from the above bank. Consider the gamma prior distribution (with parameters $\alpha > 0$ and $\beta > 0$) for θ with the following pdf:

$$f(\theta) = \frac{\beta^{\alpha} \theta^{\alpha-1} e^{-\beta\theta}}{\Gamma(\alpha)} I(\theta > 0).$$

Recall that the mean and variance of the gamma distribution are given by $\frac{\alpha}{\beta}$ and $\frac{\alpha}{\beta^2}$.

- (a) Obtain the posterior distribution of θ . [9 marks]
- (b) Find the Bayes estimator of θ as the posterior mean. [3 marks]
- (c) Suppose that the prior mean and the prior variance of θ are 0.2 and 1 respectively. A sample of n = 20 customers has mean 3.8 minutes. What will be the posterior distribution and the Bayes estimators of θ based on these data? [8 marks]