1. (a) State and prove the Markov inequality. [6 marks]
(b) State the weak law of large number (WLLN) and use the Markov inequality to prove it. [6 marks]
(c) State the ordinary central limit theorem.

Suppose X_{n} has a binomial distribution with parameters n and p. Explain why X_{n} can be written as a sum of independent and identically distributed random variables and derive the distribution of X_{n} for large n. [8 marks]
2. Let X and Y be two random variables.
(a) Under appropriate conditions (to be stated by you), prove that

$$
\text { Variance }\{X\}=\text { Variance }\{E[X \mid Y]\}+E\{\text { Variance }[X \mid Y]\}
$$

You may use without proof the result that $E\{E[X \mid Y]\}=E(X)$. [6 marks]
(b) State and prove the Rao-Blackwell theorem. Explain how can it be used to reduce the variance of an unbiased estimator based on a sufficient statistic. [8 marks]
(c) The manufacturer of a certain type of car tyre guarantees to pay compensation if the tyre needs to be replaced within $22,000 \mathrm{~km}$ of its use. Assume that the distance, X, travelled before a tyre is replaced has an exponential distribution with the following probability density function (pdf)

$$
f(x, \lambda)=\lambda e^{-\lambda x} I(x>0)
$$

where λ is the unknown parameter. Suppose we are interested in estimating the probability $P[X<22000]$ based on a random sample X_{1}, \ldots, X_{n} of size n where X_{i} denotes the distance (in km) travelled by the i-th car in the sample, $1 \leq i \leq n$.

Obtain an unbiased estimator of $P[X<22000]$ based on X_{1} only.
[Hint: Use indicator function.]
Assume that $\bar{X}=\sum_{i=1}^{n} X_{i} / n$ is a sufficient statistic for λ, use the Rao-Blackwell theorem to obtain an improved estimator of $P[X<22000]$. You do not need to show the explicit expression of the estimator in terms of \bar{X}. [6 marks]
3. Let θ be the proportion of the population who support a certain political issue, $0<\theta<1$. Let X_{1}, \ldots, X_{n} denote a random sample of size n from the population where $X_{i}=1$ if the i-th person supports the issue and $X_{i}=0$ if the i-th person does not support the issue. The probability mass function (pmf) of each X_{i} is given by

$$
f(x, \theta)=\theta^{x}(1-\theta)^{(1-x)} I(x=0,1) .
$$

Suppose we are interested in estimating the proportion θ based on X_{1}, \ldots, X_{n}.
(a) Prove directly using the definition of sufficiency that $\sum_{i=1}^{n} X_{i}$ is a sufficient statistic for θ. Here you are not allowed to use the factorisation theorem. [8 marks]
(b) Write down the expressions for the mean and variance of the sample mean \bar{X}. [2 marks]
(c) Prove directly using the definition of completeness that $\sum_{i=1}^{n} X_{i}$ is a complete sufficient statistic for θ. Next use the Lehmann and Scheffe technique to derive the uniformly minimum variance unbiased estimator (UMVUE) of θ. [10 marks]
4. Let $L\left(\theta, x_{1}, \ldots, x_{n}\right)$ denote the likelihood function of a random sample of n observations $\left\{x_{1}, \ldots, x_{n}\right\}$ from a distribution $f(x, \theta)$ and let T denote an unbiased estimator of $\tau(\theta)$, a function of θ, and put $U=\frac{\partial \log L}{\partial \theta}$.
(a) Prove that under appropriate conditions Covariance $(T, U)=\tau^{\prime}(\theta)=\frac{\partial \log L}{\partial \theta}$. Here you may assume without proof that $E(U)=0$ and $E\left(U^{2}\right)=-E\left[\frac{\partial^{2} \log L}{\partial \theta^{2}}\right]$. [5 marks]
(b) Hence derive the Cramer-Rao lower bound for the variance of an unbiased estimator based on a random sample of size n. [3 marks]
(c) The total number of misprints per page in a book can often be modelled as a Poisson random variable X with parameter λ and the probability mass function (pmf) given by

$$
f(x, \lambda)=e^{-\lambda} \lambda^{x} / x!, \quad x=0,1,2, \ldots
$$

Suppose that the publisher is interested in estimating the mean number of misprints per page λ based on n randomly selected pages from the book with number of misprints X_{1}, \ldots, X_{n}, respectively.
i. Write down expressions for the mean and variance of $\bar{X}=\sum_{i=1}^{n} X_{i} / n$ and show that \bar{X} is the uniformly minimum variance unbiased estimator (UMVUE) of λ. [7 marks]
ii. Obtain the UMVUE of the variance of \bar{X}. [3 marks]
iii. Suppose $n=5$ and $X_{1}=0, X_{2}=0, X_{3}=1, X_{4}=0$ and $X_{5}=2$. Compute the UMVU estimate of λ and that of the variance of \bar{X}. [2 marks]
5. For describing the annual household incomes of high-earning families in a certain community, a truncated Pareto distribution with the following probability density function (pdf)

$$
f(x, \theta)=\theta x^{-2} I(x \geq \theta),
$$

is used, where $\theta>0$ is an unknown parameter.
(a) Sketch the likelihood function and find the maximum likelihood estimator (MLE) of θ. [6 marks]
(b) Derive the cumulative distribution function of the MLE and find its mean. Is the MLE unbiased for θ ? If not, construct an unbiased estimator of θ based on the MLE. [7 marks]
(c) Prove that the MLE converges in probability to θ. [7 marks]
6. Let X_{1}, \cdots, X_{n} be independent with $X_{i} \sim N(i \mu, 1), 1 \leq i \leq n$. Supose we want to test $H_{0}: \mu=0$ against $H_{1}: \mu=\mu_{0}$, where $\mu_{0}>0$ is known. In the following problems you may need to use $\sum_{i=1}^{n} i=n(n+1) / 2$ and $\sum_{i=1}^{n} i^{2}=n(n+1)(2 n+1) / 6$.
(a) Use the Neyman-Pearson Lemma to show that the critical region of the most powerful test is of the form $\left\{\sum_{i=1}^{n} i X_{i}>k\right\}$.

Find the value of k corresponding to the most powerful size α test. [7 marks]
(b) Obtain a suitable pivotal quantity to construct a two-sided $100(1-\alpha) \%$ confidence interval for μ. [7 marks]
(c) Suppose $n=4$ and the observed values are $X_{1}=-0.5, X_{2}=0.4, X_{3}=1.1, X_{4}=3.5$. In the following you may need to use $P[N(0,1)>1.645]=0.05$ and $P[N(0,1)>$ $1.96]=0.025$.
Use the critical region of (a) to test $H_{0}: \mu=0$ against $H_{1}: \mu=1$ at 5% level based on the above data. What is your conclusion?
Use the pivotal quantity of (b) to obtain a two-sided 95% confidence interval for μ based on the above data. [6 marks]
7. Suppose that there are 4 coins in a box, each one being either silver or copper. Let θ denote the total number of silver coins in the box so that the possible values of θ are $\{0,1,2,3,4\}$. Assume an ignorance prior for θ; this means $P[\theta=i]=1 / 5,0 \leq i \leq 4$.

A coin is chosen at random from the box and suppose that it has turned out to be silver.
(a) Obtain the likelihood function $P[$ silver coin $\mid \theta]$, for $\theta \in\{0,1,2,3,4\}$. [7 marks]
(b) Use the likelihood function and the ignorance prior to show that the posterior probabilities are given by

$$
P[\theta=i \mid \text { silver coin }]=\frac{i}{10}, \quad 0 \leq i \leq 4
$$

[7 marks]
(c) Find the mean of the posterior distribution and hence find the Bayes estimator of the total number of silver coins in the box. [4 marks]
(d) Let Y denote the total number of copper coins in the box. What will be the Bayes estimator of Y given that when a coin is chosen at random from the box it turned out to be silver. [2 marks]

