RESTRICTED OPEN BOOK EXAMINATION
Full marks can be obtained for complete answers to four questions.
Credit will only be given for the best four answers.
Candidates may bring into the examination hall up to six A4 pages of notes, written, typed or printed on both sides; but they must attach these notes to their examination scripts at the end of the examination.

Useful Information

- For a random variable, X, with variance σ^2 , Chebyshev's inequality states that for any t > 0 $P\left\{ \left| X E(X) \right| > t \right\} \le \frac{\sigma^2}{t^2}.$
- If $X_1, ..., X_n$ are independent identically distributed random variables with probability density function f(x) and distribution function F(x), and if

$$X_{(1)} \leq X_{(2)} \leq ... \leq X_{(n)}$$

denote the corresponding order statistics, the probability density function, $p_j(y)$, of $Y = X_{(j)}$ is given by

$$p_{j}(y) = \frac{n!}{(j-1)!(n-j)!} \{F(y)\}^{j-1} \{1 - F(y)\}^{n-j} f(y) \qquad (j = 1, ..., n).$$

- 3) For any $\alpha > 0$ $\Gamma(\alpha) = \int_0^\infty t^{\alpha 1} e^{-t} dt = (\alpha 1)!.$
- 4) If *X* has a Gamma distribution with parameters α and β , its probability density function is, with $\alpha > 0$, $\beta > 0$,

$$f(x|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \quad 0 < x < \infty.$$

5) If a random variable X is Poisson with parameter m > 0, its probability mass function is:

$$f(x) = P(X = x) = e^{-m} \frac{m^x}{x!}$$
 $(x = 0, 1, ...)$
and $E(X) = m$, $V(X) = m$.

6) If χ_k^2 is chi-squared distributed with k degrees of freedom, $k \ge 1$, its probability density function is,

$$f(x|k) = 2^{-\frac{1}{2}k} \quad \left\{ \Gamma(\frac{1}{2}k) \right\}^{-1} x^{\frac{1}{2}k-1} e^{-\frac{1}{2}x}, \qquad 0 < x < \infty$$
and $E(\chi_k^2) = k, \ V(\chi_k^2) = 2k.$

1. A random variable X is distributed as Pareto with parameter α , that is, with probability density function

$$f(x) = \begin{cases} \frac{\alpha}{x^{\alpha+1}} & x > 1, \\ 0 & x \le 1, \end{cases}$$

where $\alpha > 2$.

If R(x) = P(X > x), show that

$$R(x) = \begin{cases} x^{-\alpha} & \text{if } x > 1, \\ 1 & x \le 1. \end{cases}$$
 [3 marks]

Find the mean, E(X), and variance, V(X), of X.

[3 marks]

Apply Chebyshev's inequality to find an upper bound on the probability of the event

$$\left(\left|X-E(X)\right|>t\right)$$
 for all $t>0$.

Demonstrate that for all $t > (\alpha - 1)^{-1}$, the bound given by Chebyshev's inequality may be expressed as

$$P\left(X > t + \frac{\alpha}{\alpha - 1}\right) \le \frac{V(X)}{t^2}.$$

[6 marks]

If $\alpha = 3$, compare the exact probability of the event

$$\left(X > t + \frac{3}{2}\right)$$

with the bound given by Chebyshev's inequality for this probability and explain why, now, the Chebyshev bound is increasingly less sharp as *t* increases. [4 marks]

For $\alpha = 3$, evaluate the Chebyshev bound for the probabilities of the following events:

- a) (X > 6),
- b) (X > 9),

together with the actual probabilities of these two events.

[4 marks]

In the light of your results, assess the usefulness of Chebyshev's inequality for providing a bound on the upper tail of the Pareto distribution. [2 marks]

2. A random variable, X, has an Exponential distribution with mean φ , that is, with probability density function

$$f(x) = \begin{cases} \frac{1}{\varphi} e^{-(x/\varphi)} & x \ge 0, \\ 0 & x < 0. \end{cases}$$

where $\varphi > 0$ is unknown.

Find the distribution function, $F(x) = P(X \le x)$ of X for all $x \in (-\infty, \infty)$. [2 marks]

Show that $V(X) = \varphi^2$. [3 marks]

Let $x = [x_1, ..., x_n]$ denote a vector consisting of a random sample of n observations from an Exponential distribution with mean φ . Write down the likelihood function and demonstrate that

$$S = \sum_{i=1}^{n} X_{i}$$

is sufficient for φ , where X_1 , ..., X_n are independent Exponential random variables, each with mean φ . [5 marks]

Show that

$$\overline{X}_n = \frac{S}{n}$$
,

provides an unbiased estimator of φ and write down its variance.

[3 marks]

Suppose that n = 3. Let

$$X_{(1)} \leq X_{(2)} \leq X_{(3)}$$

denote the ordered random variables and let

$$M = X_{(2)}$$

be the random variable corresponding to the median of the observed sample. Show that the probability density function, $p_M(m)$, say, of M is given by

$$p_{M}(m) = \begin{cases} \frac{6}{\varphi} e^{-\frac{2m}{\varphi}} \left(1 - e^{\frac{m}{\varphi}} \right) & m \ge 0, \\ 0 & m < 0. \end{cases}$$

Find the expected value, E(M) of M and show that $\hat{\varphi}_M = \frac{6}{5}M$ provides an unbiased estimator of φ .

Explain why \overline{X}_n may be preferred to $\hat{\varphi}_M$ as an estimator or φ . [2 marks]

3. Let $L = L(x|\theta)$ denote the likelihood function of a random sample of n observations from a distribution $f(x|\theta)$ and let T denote an unbiased estimator of $\tau(\theta)$, a function of θ , and put $U = \partial \log L/\partial \theta$.

Prove that, under appropriate conditions,

i)
$$E(U) = 0$$
; [4 marks]

ii)
$$E(U^2) = -E(\partial^2 log L/\partial \theta^2);$$
 [3 marks]

iii)
$$cov(T,U) = \tau'(\theta) = \partial \tau(\theta) / \partial \theta.$$
 [4 marks]

Hence derive the Cramer-Rao bound for the variance of T, namely

$$V(T) \ge -\left\{\tau'(\theta)\right\}^2 / E\left(\frac{\partial^2 \log L}{\partial \theta^2}\right).$$
 [3 marks]

A random sample of n observations is available from the distribution with probability density function

$$f(x|\theta) = \begin{cases} (2\theta)^{-1} |x|^{\{(1-\theta)/\theta\}} & |x| < 1, \\ 0 & \text{otherwise.} \end{cases}$$

Show that a minimum variance bound estimator of $\tau(\theta) = -\theta$ exists for this distribution. Find this estimator and give its variance. [8 marks]

Does a minimum variance bound estimator exist also for $\tau(\theta) = \theta$? If so, find this estimator and give its variance. [3 marks]

4. For testing the efficacy of a prototype kitchen mixer, a large number of raisins were dropped into a cake mix, which was then allowed to bake for an appropriate length of time. After the cake was fully cooked, it was cut into slices of equal size. Let *X* denote the number of raisins in a randomly selected slice. Under the hypothesis that the new gadget is an effective kitchen mixer, the raisins will be randomly distributed throughout the cake and *X* may be postulated to follow a Poisson distribution with probability mass function

$$f(x|\theta) = e^{-\theta} \frac{\theta^x}{x!}$$
 (x = 0, 1, ...),

where $\theta > 0$ is an unknown parameter of the distribution.

It is required to estimate $\tau(\theta) = e^{-\theta}$, where $\tau(\theta) = P(X = 0)$.

Verify that $f(x|\theta)$ is a member of the exponential family of distributions, that is, $f(x|\theta)$ may be written as

$$f(x|\theta) = a(x)b(\theta)\exp\{c(\theta)u(x)\},$$

where a(x) and u(x) are some functions of x and $b(\theta)$ and $c(\theta)$ are some functions of θ , and give explicit expressions for these functions. [3 marks]

Let x_l , ..., x_n denote the observed number of raisins in n randomly selected slices of the cake, n > 1, and suppose that x_i is an observed value of X_i , i = 1, ..., n, where the random variables X_l , ..., X_n are independent identically distributed with common probability function $f(x|\theta)$, as above. Deduce that

$$T = \sum_{i=1}^{n} X_{i}$$

is sufficient for θ , and state the distribution of T.

[3 marks]

A banal estimator of θ is

$$h(X_1, ..., X_n) = \begin{cases} 1 & \text{if } X_1 = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Demonstrate that $h(X_1, ..., X_n)$ is unbiased for $\pi(\theta)$ and explain giving a reason whether or not you would recommend it for estimating $\pi(\theta)$. [3 marks]

Show that the conditional probability that $X_I = 0$, conditional on T = t, is given by

$$P(X_1 = 0 \mid T = t) = \frac{(n-1)^t}{n^t}$$
.

[5 marks]

Q4 contd.

Hence show that

$$g(T) = E\{h(X_1, ..., X_n) | T\} = \left(1 - \frac{1}{n}\right)^T.$$
 [2 marks]

What properties does g(T) possess as an estimator of $\tau(\theta)$, according to the Rao-Blackwell theorem? [3 marks]

Demonstrate that

$$V\{g(T)\}=e^{-2\theta} \{e^{\theta/n}-1\}.$$

[5 marks]

Explain why g(T) also provides the minimum variance unbiased estimator of $\pi(\theta)$.

[1 mark]

5. During peak periods on each week day, motor vehicles arrive at a busy traffic junction according to Poisson process at the rate of λ vehicles per time unit. For estimating λ , the value of T, the time taken from the start of the observation process until the kth motor vehicle arrives at the junction is recorded, where T has a gamma distribution with probability density function

$$f_T(t|\lambda) = \begin{cases} \frac{\lambda^k}{\Gamma(k)} t^{k-1} e^{-\lambda t}, & t > 0, \\ 0 & t \leq 0. \end{cases}$$

and k > 1 is a fixed integer.

Demonstrate that the maximum likelihood estimator of λ based on an observed value, t, say, of T is given by

$$\hat{\lambda}_B = \frac{k}{T}.$$

[5 marks]

Show that

$$E(\hat{\lambda}_B) = \left(\frac{k}{k-1}\right)\lambda, \qquad k > 1$$

and deduce that $\hat{\lambda}_B$ provides a biased estimator of λ .

[6 marks]

For k=2 and 10, evaluate the bias of $\hat{\lambda}_B$ and comment on its implication in estimating λ . [2 marks]

Suggest an unbiased estimator of λ based on T and evaluate its variance.

[5 marks]

An alternative method of data collection is to record the value of K, where K denotes the number of motor vehicles arriving at the traffic junction in a fixed amount of time, t, say, and K has a Poisson distribution with mean λt , that is,

$$P\{K=k\} = f_K(k|\lambda) = \frac{(\lambda t)^k}{k!} e^{-\lambda t} \qquad (k=0, 1, ..., k)$$

Suppose that K = k is observed. Demonstrate that the maximum likelihood estimator of λ based on this data is given by $\hat{\lambda}_P$ where

$$\hat{\lambda}_P = \frac{K}{t}.$$

Show that $\hat{\lambda}_P$ is unbiased for λ with variance

$$V(\hat{\lambda}_P) = \frac{\lambda}{t}.$$

[5 marks]

Comment on why $\hat{\lambda}_P$ and $\hat{\lambda}_{UB}$ are strictly not comparable.

[2 marks]

6. The lifelength, *X*, of a certain electronic component is modelled by a Weibull distribution with probability density function

$$f(x) = \begin{cases} \theta^{-2} x \exp(-x^2/2\theta^2) & 0 \le x < \infty, \\ 0 & x < 0, \end{cases}$$

where $\theta > 0$ is an unknown parameter of the distribution.

Verify that $Y = X^2/\theta^2$ has a χ^2 distribution with 2 degrees of freedom. [4 marks]

Given a random sample of n observations, $x_1, ..., x_n$, from this distribution, prove that the most powerful test of the hypothesis

$$H_0$$
: $\theta = \theta_0$

against the alternative

$$H_1$$
: $\theta = \theta_1 > \theta_0$

has the critical region

$$\sum_{i=1}^{n} x_{i}^{2} > c_{0} \theta_{0}^{2},$$

where c_0 is such that

$$P(\chi_{2n}^2 > c_0) = \alpha$$

and α denotes the size of the test.

[14 marks]

[N.B. You may use without proof, but should state explicitly, a standard distributional result on the sum of independent χ^2 random variables.]

Deduce that the test is uniformly most powerful against all alternative hypotheses of the form H_1 : $\theta > \theta_0$. [2 marks]

If n = 10, $\theta_0 = 1$, $\theta_1 = 1.7$, find the critical region of size 0.05, and show that the power of the test is approximately 95%. [5 marks]

7. A computer program written by a trainee generates random numbers from a uniform distribution with probability density function

$$f(x|\theta) = \begin{cases} \theta^{-1} & 0 \le x \le \theta, \\ 0 & \text{elsewhere,} \end{cases}$$

where $\theta > 0$ is unknown.

A Bayesian statistician testing the computer program obtains a random sample of n random numbers, $x_1, ..., x_n$, generated by the program. Write down the likelihood function of the data. Suppose that x_i denotes the observed value of a random variable X_i (i = 1, ..., n). Show that

$$X_{(n)} = \max(X_1, ..., X_n)$$

is sufficient for θ .

The statistician specifies the following prior distribution for θ :

$$\pi_0(\theta) = \begin{cases} 2\theta & 0 \le \theta \le 1 \\ 0 & \text{elsewhere} \end{cases}$$

Find the value, d_0 , say, of θ such that the prior probability that θ is less than d_0 is 0.95, that is, d_0 is such that

$$P(\theta < d_0) = 0.95.$$
 [2 marks]

Evaluate also the mean, $E(\theta)$, of the prior distribution of θ .

[1 mark]

[5 marks]

Show that the posterior distribution, $\pi_1(\theta|x)$, of θ , conditional on data $x = [x_1, ..., x_n]$, is given by, with n > 2,

$$\pi_{1}(\theta|x) = \begin{cases} \left[\frac{(n-2)\{x_{(n)}\}^{n-2}}{1-\{x_{(n)}\}^{n-2}}\right] \frac{1}{\theta^{n-1}}, & x_{(n)} \leq \theta \leq 1, \\ 0 & \text{elsewhere,} \end{cases}$$

where $x_{(n)} = \max(x_1, ..., x_n)$.

[7 marks]

Explain why $\pi_1(\theta|x)$ depends on x only through the observed value, $x_{(n)}$, of the sufficient statistic $X_{(n)}$ for θ .

If n = 5 and x = [0.1, 0.2, 0.25, 0.45, 0.5], find the value, d_1 , say, of θ such that, conditional on x, the posterior probability that θ is less than d_1 is 0.95, that is,

$$P\{(\theta|x) < d_1\} = 0.95.$$
 [3 marks]

Q7 contd.

Find also the mean, $E(\theta|x)$, of the posterior distribution of θ .

[2 marks]

Compare the values of d_0 and d_1 and of $E(\theta)$ and $E(\theta|x)$ and comment on how, in the light of the data, the statistician's beliefs concerning θ have changed. [2 marks]