1. Let $\gamma: I \to \mathbf{R}^2$ be a regular plane curve with unit tangent \mathbf{T} , unit normal \mathbf{U} and curvature κ . Let r be a real number. The parallel curve δ to γ at distance r is the curve defined by

$$\delta(t) = \gamma(t) + r\mathbf{U}(t).$$

(i) In this part, you may assume that γ is unit speed. Show that δ is a regular curve except for values of t where $\kappa(t) \neq 0$ and $r = 1/\kappa(t)$.

Assume now that $r\kappa(t) < 1$ for all $t \in I$. Show that the unit tangent \mathbf{T}_{δ} and unit normal \mathbf{U}_{δ} to δ are the same vectors as \mathbf{T} and \mathbf{U} respectively. Show further that the curvature κ_{δ} of δ is given by

$$\kappa_{\delta} = \frac{\kappa}{1 - r\kappa}.$$

Show that the evolute of δ (namely, the curve $\delta + \mathbf{U}_{\delta}/\kappa_{\delta}$) coincides with the evolute $\gamma + \mathbf{U}/\kappa$ of γ .

(ii) For the (non unit speed) curve $\gamma(t)=(t,t^2)$ find an explicit parametrization of δ . Also find the curvature κ of γ and show that, for $r>\frac{1}{2}$, the parallel curve δ has exactly two points of non-regularity.

- **2.** Let $\gamma: I \to \mathbf{R}^3$ be a regular space curve.
- (i) Supposing γ is unit speed, and γ'' is never zero, define the standard vectors \mathbf{T} , \mathbf{P} , \mathbf{B} and the curvature κ and torsion τ of γ . Prove that

$$(\gamma' \times \gamma'') \cdot \gamma''' = \kappa^2 \tau.$$

(ii) For a general regular space curve γ with $\kappa \neq 0$, write down formulae for the curvature and torsion of γ . Let u be a real constant and let

$$\gamma(t) = (t, t^3, t^4 + ut^2).$$

Show that, for $u \neq 0$, γ has no points where $\kappa = 0$. Show that for u > 0 there are exactly two points where the torsion is zero and for u < 0 there are no torsion zero points. Show that, for u > 0, binormal vectors at the two torsion zero points are parallel to

$$(-2u^{3/2}, -12u^{1/2}, \pm 3\sqrt{6})$$

3. Let $\mathbf{X}: U \to \mathbf{R}^3$ be a surface patch. Define the term regular and the coefficients E, F, G of the first fundamental form for \mathbf{X} .

Let X be the surface patch

$$\mathbf{X}(u,v) = (u\cos v, \ u\sin v, \ u), \quad u > 0.$$

Show that **X** is a regular patch. Draw a sketch of the surface M determined by **X**. Show that E=2, F=0 and $G=u^2$.

Let $k > \sqrt{2}$ be constant, and let

$$\beta(u) = (u, \sqrt{k^2 - 2} \ln u), \quad 1 \le u \le 3,$$

be a curve in the (u, v) plane. (Here ln is the natural logarithm.) Find the length of the corresponding curve $\gamma(u) = \mathbf{X}(\beta(u))$ on M.

Calculate a unit tangent to γ and show that this tangent makes a constant angle θ with the direction (0,0,1), where $\cos \theta = 1/k$.

4. Let **X** be a parametrization of the surface of revolution obtained by rotating the regular curve $\alpha(u) = (\alpha_1(u), 0, \alpha_2(u))$ about the z-axis, namely

$$\mathbf{X}(u,v) = (\alpha_1(u)\cos v, \ \alpha_1(u)\sin v, \ \alpha_2(u)).$$

We shall assume that $\alpha_1(u)$ is never zero and that **X** is injective.

Find a unit normal N to this surface and calculate the coefficients of the first and second fundamental forms. Show that the principal directions at every point are given by \mathbf{X}_u and \mathbf{X}_v .

Now let $\alpha(u) = (2 + u^2, 0, u)$. Sketch this curve in the (x, z) plane. Show that the resulting surface of revolution has Gauss curvature

$$K = \frac{-2}{(2+u^2)(4u^2+1)^2}.$$

(State without proof any general formula you use for K.)

9

5. (i) Given a unit speed curve α on a (regular, injective) surface M parametrized by \mathbf{X} , define the three standard vectors \mathbf{T} , \mathbf{N} , \mathbf{U} associated with α at the point $\alpha(s)$. Define the *geodesic curvature* κ_g of α at this point.

Explain briefly why, for any regular curve γ on M, and any non-zero vectors $\widetilde{\mathbf{T}}, \widetilde{\mathbf{U}}$ in the directions \mathbf{T} , \mathbf{U} respectively,

$$\kappa_g = 0 \Leftrightarrow \widetilde{\mathbf{T}}' \cdot \widetilde{\mathbf{U}} = 0.$$

(ii) Now let $\mathbf{X}(s,t)=(x(s),y(s),t)$ be a surface patch, where x and y are functions of s with

$$x'^2 + y'^2 = 1$$

for all s. Show that X is regular. You may assume that X is injective.

Let k be a real constant. Consider the curve

$$\gamma(s) = \mathbf{X}(s, ks) = (x(s), y(s), ks),$$

on the surface M parametrized by \mathbf{X} . Find suitable vectors $\widetilde{\mathbf{T}}$, $\widetilde{\mathbf{U}}$ for γ and show that $\kappa_g = 0$ for all s, that is, γ is a geodesic.

Sketch the surface and the geodesic γ for the special case $x(s) = \cos s$, $y(s) = \sin s$, k = 1.

- **6.** (i) Let M be a (regular, injective) surface with parametrization \mathbf{X} , and let α be a unit speed curve on M. What does it mean to say that the unit tangent \mathbf{T} to α at a point \mathbf{p} is (a) a principal direction at \mathbf{p} , (b) an asymptotic direction at \mathbf{p} ? What is an asymptotic curve on M?
- (ii) Let $\mathbf{X}(u,v) = (u,v,u^3 3uv^2)$, which is a parametrization of the 'Monkey saddle' M. Find a (non-unit) normal $\widetilde{\mathbf{N}}$ to M.

Consider a curve $\gamma(v) = \mathbf{X}(u(v), v)$ on M, where u(v) is a smooth function of v and u(0) = 0. Show that

$$\widetilde{\mathbf{T}} = (u', 1, (3u^2 - 3v^2)u' - 6uv),$$

where the prime means d/dv, is a (non-unit) tangent vector to γ and that γ is an asymptotic curve on M if and only if

$$uu'^2 - 2u'v - u = 0$$

for all v. (State without proof the criterion you use for a curve to be asymptotic.)

By differentiating the last equation with respect to v, or otherwise, show that there are exactly three values for u'(0).

7. (i) Let $\alpha: I \to \mathbf{R}^3$ be a regular space curve, and let β be a smooth family of unit vectors with β' never zero. Let

$$\mathbf{X}(s,t) = \alpha(s) + t\beta(s)$$

be the corresponding ruled surface.

Show that there is a unique function r(s) such that, with $\gamma(s) = \alpha(s) + r(s)\beta(s)$, we have $\gamma'(s) \cdot \beta'(s) = 0$ for all s. (Thus γ is the *line of striction* on the ruled surface.)

Now let $\alpha(s) = (\cos s, \sin s, 0)$. Show that, for all s, the straight line through $\alpha(s)$, in the direction of the unit vector

$$\beta(s) = \frac{1}{\sqrt{2}}(-\sin s, \cos s, 1),$$

lies on the surface with equation $x^2 + y^2 - z^2 = 1$. Show that, for this ruled surface, α itself is the line of striction.

(ii) Let **X** be a (regular) surface. Let U be a region in the parameter plane. Write down the area of the region $\mathbf{X}(U)$ and deduce that **X** preserves area provided $EG - F^2 = 1$.

Verify that

$$\mathbf{X}(u,v) = (\sqrt{1-v^2}\cos u, \sqrt{1-v^2}\sin u, v), -1 < v < 1$$

preserves area. Show that the image of this **X** is the unit sphere apart from the points $(0, 0, \pm 1)$.

Show that **X** may be obtained as follows. First map (u, v) to the cylinder $x^2 + y^2 = 1$ by the parametrization $\mathbf{Y}(u, v) = (\cos u, \sin u, v)$. Then join $\mathbf{Y}(u, v)$ to (0, 0, v) by a straight line and take the intersection point with the unit sphere as $\mathbf{X}(u, v)$.

8. Let $\mathbf{X}: U \to \mathbf{R}^3$ be a parametrization of a (regular, injective) surface for which the first fundamental form has coefficients E = A(u), F = 0, G = B(u) for some smooth positive functions A, B. So the first fundamental form is independent of the parameter v. Check that

$$\Gamma_{11}^1 = E_u/2E$$
, $\Gamma_{12}^1 = 0$, $\Gamma_{22}^1 = -G_u/2E$, $\Gamma_{11}^2 = 0$, $\Gamma_{12}^2 = G_u/2G$, $\Gamma_{22}^2 = 0$,

and give the corresponding expressions for the β_i^j in terms of E, G, e, f, g

Write out the Gauss-Weingarten equations for such a surface, and use them to compute $(\mathbf{X}_{uu})_v$ and $(\mathbf{X}_{uv})_u$. Using the fact that the resulting expressions are equal, equate the coefficients of \mathbf{X}_v to deduce that the Gauss curvature of the surface is given by

$$K = \frac{E_u G_u G - 2EGG_{uu} + EG_u^2}{4E^2 G^2}.$$

Now consider the Riemannian surface M determined by

$$U = \{(u, v) \in \mathbf{R}^2 : u > 0\}$$

(the upper half plane) together with the first fundamental form given by $E = G = 1/u^2$, F = 0. Show that the Gauss curvature of this surface is -1.

The Gauss-Weingarten equations

$$\mathbf{X}_{uu} = \Gamma_{11}^{1} \mathbf{X}_{u} + \Gamma_{11}^{2} \mathbf{X}_{v} + e\mathbf{N}$$

$$\mathbf{X}_{uv} = \Gamma_{12}^{1} \mathbf{X}_{u} + \Gamma_{12}^{2} \mathbf{X}_{v} + f\mathbf{N}$$

$$\mathbf{X}_{vv} = \Gamma_{22}^{1} \mathbf{X}_{u} + \Gamma_{22}^{2} \mathbf{X}_{v} + g\mathbf{N}$$

$$\mathbf{N}_{u} = \beta_{1}^{1} \mathbf{X}_{u} + \beta_{1}^{2} \mathbf{X}_{v}$$

$$\mathbf{N}_{v} = \beta_{2}^{1} \mathbf{X}_{u} + \beta_{2}^{2} \mathbf{X}_{v}$$

The coefficients $\beta_i^j, \ \Gamma_{ij}^k$, are given by

$$\beta_1^1 = \frac{Ff - Ge}{EG - F^2}, \ \beta_1^2 = \frac{Fe - Ef}{EG - F^2}, \ \beta_2^1 = \frac{Fg - Gf}{EG - F^2}, \ \beta_2^2 = \frac{Ff - Eg}{EG - F^2}$$

$$\Gamma_{11}^1 = \frac{GE_u - 2FF_u + FE_v}{2(EG - F^2)}, \ \Gamma_{12}^1 = \frac{GE_v - FG_u}{2(EG - F^2)}, \ \Gamma_{22}^1 = \frac{2GF_v - GG_u - FG_v}{2(EG - F^2)},$$

$$\Gamma_{11}^2 = \frac{2EF_u - EE_v - FE_u}{2(EG - F^2)}, \ \Gamma_{12}^2 = \frac{EG_u - FE_v}{2(EG - F^2)}, \ \Gamma_{22}^2 = \frac{EG_v - 2FF_v + FG_u}{2(EG - F^2)}.$$