1 (a) [Standard problem] The total number of rearrangements ('anagrams') is $10!/(3!2!)=302400$ since there are three Es and two Ss. [1 mark]
(i) For no two Es to come together consider the remaining seven letters M R S Y S I D. The three Es can now go in the 8 spaces between these letters and at the ends. This gives $\binom{8}{3}$ choices. There are also $\frac{7!}{2!}$ rearrangements of the seven letters, hence $\binom{8}{3} \frac{7!}{2!}=141120$ rearrangements in which no two Es come together. [3 marks]
(ii) The number of rearrangements in which at least two come together is, from (i), $302400-141120=161280$. For the number in which exactly two Es come together we subtract from this the number in which all three Es come together. For the latter we treat the three Es as one letter, giving $8!/ 2!=20160$ rearrangements. Subtracting from (i) gives 141120 as the answer. Alternatively, there are 8 places for EE and 7 places for E and $7!/ 2$! rearrangements of the other 7 letters, giving $8 \times 7 \times(7!/ 2!)$ altogether, which gives the same answer, 141120. [3 marks]
(b) [Standard problem] The possible totals of the three numbers are from $1+2+3=$ 6 to $38+39+40=117$, which is 112 possible totals. We want the smallest value of k for which $\binom{k}{3}>112$ since this guarantees that there are more than 1123 -element subsets of S and by the pigeonhole principle two of them at least will have the same sum. We find that $\binom{9}{3}=84$ and $\binom{10}{3}=120$ so the answer is $k=10$. [6 marks]
(c) [Unseen but familiar ideas] The coefficient of x^{n} in $(1+x)^{2 n}$ is $\binom{2 n}{n}$. Now $(1+x)^{n}(1+x)^{n}=\left(\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\ldots\binom{n}{n} x^{n}\right)\left(\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\ldots\binom{n}{n} x^{n}\right)$
and adding up the coefficients of x^{n} we get

$$
\binom{n}{0}\binom{n}{n}+\binom{n}{1}\binom{n}{n-1}+\ldots+\binom{n}{n}\binom{n}{0}
$$

which is equal to $\binom{n}{0}^{2}+\binom{n}{1}^{2}+\ldots+\binom{n}{n}^{2}$ since we always have $\binom{n}{k}=\binom{n}{n-k}$. Hence this sum equals $\binom{2 n}{n}$.
Now given n men and n women we consider in succession the subsets with $r=0,1,2, \ldots, n$ men and the same number of women. For r men and r women we can choose the men in $\binom{n}{r}$ ways and similarly for the women. Thus the number of subsets with r men and r women is $\binom{n}{r}^{2}$. Adding these up for all values of r (including $r=0$) and using the above formula gives the total as $\binom{2 n}{n}$ subsets. [7 marks]

2 [Bookwork] Consider $n+r-1$ crosses (or other symbols) in a straight line and mark $n-1$ of them. This makes r unmarked crosses and n spaces between the markers and at the ends (some spaces possibly empty). We can interpret this as n non-negative integers (the number of crosses strictly between markers) adding to r. Hence the number of solutions is precisely $\binom{n+r-1}{n-1}$. [3 marks]
(a)(i) [Standard problem] Invent a new variable x_{5}, also ≥ 0. Then we want the number of solutions in non-negative integers of $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=24$, and this is $\binom{24+5-1}{5-1}=\binom{28}{4}=20475$. [2 marks]
(ii) If $x_{1}, x_{2}, x_{3}, x_{4}$ are all ≥ 3 then replace by $y_{i}=x_{i}-3$ so we are solving $y_{1}+y_{2}+$ $y_{3}+y_{4}+x_{5}=12$ with all variables non-negative integers. The number of solutions is $\binom{12+5-1}{5-1}=\binom{16}{4}=1820$. [3 marks]
(b) [Standard problem] First arrange the 12 books in any order. This gives 12! arrangements. Next we want to solve the equation $x_{1}+x_{2}+x_{3}=12$ with all $x_{i}>0$, where x_{i} is the number of books to be placed on shelf i. Replacing x_{i} by $y_{i}+1$ as above, the number of solutions is $\binom{9+3-1}{3-1}=\binom{11}{2}=55$, so the total number of arrangements of the 12 books is
55×12 ! which is in fact 26345088000 . [5 marks]
(c) [Unseen] Suppose first that the sequence starts with a 1 . Let $x_{1}, x_{2}, \ldots, x_{7}$ be the lengths of the blocks, where x_{i} for i odd refers to the 1 s and for i even to the 0 s . We are then seeking the number of solutions of

$$
x_{1}+x_{3}+x_{5}+x_{7}=8, \quad x_{2}+x_{4}+x_{6}=7
$$

with all the $x_{i}>0$. As above replace x_{i} by $y_{i}+1$. The number of solutions to the separate equations are then $\binom{4+4-1}{4-1}=\binom{7}{3}=35$ and $\binom{4+3-1}{3-1}=\binom{6}{2}=15$. The total number is the product of these, namely 525 .

We must add to this the number of sequences which start with a 0 . We are then solving, with all $x_{i}>0$,

$$
x_{1}+x_{3}+x_{5}+x_{7}=7, \quad x_{2}+x_{4}+x_{6}=8,
$$

the x_{i} with i odd now referring to numbers of 0 s . The number of solutions, by the same method, is
$\binom{3+4-1}{4-1} \times\binom{ 5+3-1}{3-1}=\binom{6}{3} \times\binom{ 7}{2}=20 \times 21=420$.
The total number of sequences is therefore $525+420=945$. [7 marks]

3 [The theorem and (a)(i) are bookwork and the remaining parts of this question are standard problems.] Hall's Selection Theorem states that if $\left\{A_{i} \mid i \in S\right\}$ is a finite collection of subsets of A then it is possible to choose distinct representatives $x_{i} \in A_{i}$ if and only if, for any subset J of S, the union of the corresponding sets A_{i} has at least $|J|$ elements. [2 marks]
(a) (i) Label the squares w or b as on a chessboard. In any covering a tile will pair a white and a black square. Check that there are the same number of squares of each colour. For each white square w_{i} write A_{i} for the set of black squares adjacent to it. A choice of distinct representatives $\left\{x_{i}\right\}$ of the sets A_{i} will determine a perfect cover, by placing a tile to cover w_{i} and x_{i}. Conversely, any perfect cover will determine distinct representatives of the sets A_{i} in this way. [2 marks]
(ii)

For (a) the list of sets A_{i} is as follows, with the unsuccessful attempt to cover the board noted in the bottom line of the table.

w	1	2	3	4	5	6	7	8	9	10	11
A_{i}	1	2,4	$1,3,5$	$3,4,6$	$3,5,6,9$	$4,6,7$	$5,8,9$	$6,9,10$	7,11	9,10	10,11
attempt	1	2	5	3	9	7	8	6	11	10	stuck

[3 marks]

(iii) The algorithm proceeds as follows, where x always refers to white squares and y to black squares. Also x_{0} is the first unmatched white square (here 11) and for $i>0, y_{i}$ is already matched to x_{i}. The numbers y_{i} are all distinct. The right-hand column indicates one choice of x which is paired to the chosen y.

$x_{0}=11$	$A_{x_{0}}=\{10,11\}$	$y_{1}=10$	x_{0}
$x_{1}=10$	$A_{x_{0}} \cup A_{x_{1}}=\{10,11,9\}$	$y_{2}=11$	x_{0}
$x_{2}=9$	$A_{x_{0}} \cup A_{x_{1}} \cup A_{x_{2}}=\{10,11,9,7\}$	$y_{3}=9$	x_{1}
$x_{3}=5$	$A_{x_{0}} \cup A_{x_{1}} \cup A_{x_{2}} \cup A_{x_{3}}=\{10,11,9,7,3,5,6\}$	$y_{4}=7$	x_{2}
$x_{4}=6$	$A_{x_{0}} \cup A_{x_{1}} \cup A_{x_{2}} \cup A_{x_{3}} \cup A_{x_{4}}=\{10,11,9,7,3,5,6,4\}$	$y_{5}=4$	unmatched

We now proceed to the Endgame:

$$
\begin{array}{cccccc}
y_{5} & x_{4} & y_{4} & x_{2} & y_{2} & x_{0} \\
4 & 6 & 7 & 9 & 11 & 11
\end{array}
$$

The matchings $6 \rightarrow 7,9 \rightarrow 11$ are replaced by $6 \rightarrow 4,9 \rightarrow 7,11 \rightarrow 11$ to give the final matchings

w	1	2	3	4	5	6	7	8	9	10	11
A_{i}	1	2,4	$1,3,5$	$3,4,6$	$3,5,6,9$	$4,6,7$	$5,8,9$	$6,9,10$	7,11	9,10	10,11
final	1	2	5	3	9	4	8	6	7	10	11

[5 marks]
(iv) For (c) the list is

w	1	2	3	4	5	6	7	8	9	10	11
A_{i}	2,3	$1,4,5$	2	3,6	$4,5,7$	6,9	$5,7,8,10$	8,9	$6,9,11$	7,10	9,11
forced	3		2	6		9		8	stuck		11

We can prove that no matching exists either by noticing that the choices given in the bottom row are forced, taking in turn $w_{3}, w_{1}, w_{4}, w_{6}, w_{8}, w_{11}$ so that there is no choice for w_{9}; or by noticing that the seven A_{i} for $i=1,3,4,6,9,11$ have between them only five elements, $2,3,6,9,11$, violating the Hall condition. [4 marks]
(b) The five sets of presents corresponding to children 2, 4, 5, 8, 9 have only four different presents between them, namely A, D, G, I. Thus a complete matching is impossible. On the other hand the matching

1	2	3	4	5	6	7	8	9
ABCF	ADI	EFGH	DG	DI	ABDEF	BCDEH	ADG	AGI
C	D	F		I	B	E	G	A

successfully matches eight children and presents.
With the extra present J child 2 can have J and child 4 can have D and everyone is happy. [4 marks]

4 [All the parts of this question are standard, but relatively complicated, calculations.]
(a) Let A_{1}, A_{2}, A_{3} be the sets of integers in $\{1,2, \ldots, 2000\}$ which are divisible by $2,3,5$ respectively. We need to find $\left|A_{1} \cup A_{2} \cup A_{3}\right|$. The principle of inclusion-exclusion tells us that this is

$$
\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left(\left|A_{1} \cap A_{2}\right|+\left|A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{3}\right|\right)+\left|A_{1} \cap A_{2} \cap A_{3}\right| .
$$

Since 2,3 and 5 are primes we can count these as follows. Note that the number of integers in the given range which are multiples of k is $[2000 / k]$.

$$
\begin{gathered}
\left|A_{1}\right|=2000 / 2=1000,\left|A_{2}\right|=[2000 / 3]=666,\left|A_{3}\right|=2000 / 5=400 \\
\left|A_{1} \cap A_{2}\right|=[2000 / 6]=333,\left|A_{2} \cap A_{3}\right|=[2000 / 15]=133,\left|A_{1} \cap A_{3}\right|=2000 / 10=200, \\
\left|A_{1} \cap A_{2} \cap A_{3}\right|=[2000 / 30]=66 .
\end{gathered}
$$

The required number is $1000+666+400-333-133-200+66=1466$. [5 marks]
(b)(i) Given a collection B of squares on a rectangular board, write $r_{k}(B)$ for the number of ways of selecting k squares of B, no two in the same row or column. The rook polynomial of B is $r(B)=\sum_{k} r_{k}(B) x^{k}$.
Rule 1 If s is any square of B, and B_{1} is obtained from B by removing s and B_{2} by removing all squares on the same row or column as s, then $r(B)=r\left(B_{1}\right)+\operatorname{xr}\left(B_{2}\right)$.

Rule 2 If $B=B_{1} \cup B_{2}$, where no square of B_{1} is on the same row or column as a square of B_{2}, then $r(B)=r\left(B_{1}\right) r\left(B_{2}\right)$. [3 marks]
(ii) In the diagram below s represents the square which is being used in an application of Rule 1.

$$
\begin{aligned}
r\left(\begin{array}{cc}
s & \square \\
\square \square & \square \\
\square \square
\end{array}\right) & =r\left(\begin{array}{cc}
& \square \\
\square & s \\
\square & \square
\end{array}\right)+x r\binom{\square}{\square \square} \\
& =r\left(\begin{array}{cc}
\square & \square \\
\square & \square
\end{array}\right)+x r\binom{\square}{\square}+x\left(1+3 x+x^{2}\right) \\
& =R(\square) R\binom{\square}{\square \square}+x(1+2 x)+x\left(1+3 x+x^{2}\right) \\
& =(1+x)\left(1+3 x+x^{2}\right)+x(1+2 x)+x\left(1+3 x+x^{2}\right) \\
& =1+6 x+9 x^{2}+2 x^{3} .
\end{aligned}
$$

[5 marks]
(iii) Here we start with a 5×5 board where the five rows represent the five numbers 1 , $2,3,4,5$. The squares marked are the 'forbidden positions' dictated by the fact that the third row must not have the same entry in the same column as one of the first two rows. We therefore seek the number of ways of placing 5 rooks on the board with the black squares deleted.

First we calculate the rook polynomial of the 5×5 board B with the black squares the only ones present. Note that the first and fourth columns and the first and fourth rows constitute a board B_{1} as in Rule 2 which has no square in the same row or column as the rest of the board, B_{2}. Hence $r(B)$ is the product of $r\left(B_{1}\right)$ and $R\left(B_{2}\right)$. Furthermore B_{2} is the board considered in (ii) above. So we have immediately

$$
r(B)=\left(1+4 x+2 x^{2}\right)\left(1+6 x+9 x^{2}+2 x^{3}\right)=1+10 x+35 x^{2}+50 x^{3}+26 x^{4}+4 x^{5}
$$

The number of ways of selecting m squares no two in the same row or column on an $m \times n$ board $(m \leq n)$ with the squares of B forbidden is

$$
\frac{1}{(n-m)!}\left(n!-(n-1)!r_{1}(B)+(n-2)!r_{2}(B)-\ldots+(-1)^{m}(n-m)!r_{m}(B)\right) .
$$

In the present case we have $m=n=5$ and this gives the number of possibilities for the third row of the Latin square

$$
5!-4!\times 10+3!\times 35-2!\times 50+1!\times 26-0!\times 4=12
$$

5 [All parts except (v) are standard. Part (v) is unseen but the general formula for $1 /(1-x)^{k}$ will be discussed explicitly.]
(i) Write $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, then $\left(1-2 x-3 x^{2}\right) A(x)=a_{0}+\left(a_{1}-2 a_{0}\right) x=2-2 x$. Hence

$$
A(x)=\frac{2-2 x}{1-2 x-3 x^{2}}=\frac{2-2 x}{(1+x)(1-3 x)}=\frac{A}{1+x}+\frac{B}{1-3 x} .
$$

Partial fractions gives $A=1, B=1$, and $A(x)=\sum(-x)^{n}+\sum(3 x)^{n}$, so $a_{n}=(-1)^{n}+3^{n}$. [3 marks]
(ii)

$$
\left(1-2 x-3 x^{2}\right) A(x)=a_{0}+\left(a_{1}-2 a_{0}\right) x+\left(x^{2}+x^{3}+x^{4}+\ldots\right)=2-2 x+\frac{x^{2}}{1-x}
$$

This gives

$$
A(x)=\frac{2-4 x+3 x^{2}}{(1-x)(1+x)(1-3 x)}=-\frac{\frac{1}{4}}{1-x}+\frac{\frac{9}{8}}{1+x}+\frac{\frac{9}{8}}{1-3 x},
$$

using partial fractions.
Hence, reading off the coefficient of $x^{n}, a_{n}=-\frac{1}{4}+\frac{9}{8}(-1)^{n}+\frac{9}{8} 3^{n}$. [4 marks]
(iii) Here,

$$
\begin{aligned}
(1-4 x) A(x)= & a_{0}+\left(a_{1}-4 a_{0}\right) x+\left(a_{2}-4 a_{1}\right) x^{2}+\ldots=3+\left(2 x+(2 x)^{2}+(2 x)^{3}+\ldots\right) \\
& =3+2 x\left(1+2 x+(2 x)^{2}+\ldots\right)=3+\frac{2 x}{1-2 x}=\frac{3-4 x}{1-2 x} .
\end{aligned}
$$

Using partial fractions,

$$
A(x)=\frac{3-4 x}{(1-4 x)(1-2 x)}=\frac{4}{1-4 x}-\frac{1}{1-2 x},
$$

and reading off the coefficient of $x^{n}, a_{n}=4 \cdot 4^{n}-2^{n}$, which can also be written as $2^{n}\left(2^{n+2}-1\right)$. [3 marks]
(iv) Here,
$\left(1-x-2 x^{2}\right) A(x)=a_{0}+\left(a_{1}-a_{0}\right) x+\left(a_{2}-a_{1}-2 a_{0}\right) x^{2}+\ldots=1+x^{2}-x^{3}+x^{4}-x^{5}+\ldots$

$$
=x+\frac{1}{1+x}=\frac{1+x+x^{2}}{1+x} .
$$

Using partial fractions,

$$
A(x)=\frac{1+x+x^{2}}{(1+x)^{2}(1-2 x)}=-\frac{\frac{1}{9}}{1+x}+\frac{\frac{1}{3}}{(1+x)^{2}}+\frac{\frac{7}{9}}{1-2 x}
$$

and reading off the coefficient of x^{n} gives

$$
a_{n}=-\frac{1}{9}(-1)^{n}+\frac{1}{3}(n+1)(-1)^{n}+\frac{7}{9} 2^{n}=\frac{2}{9}(-1)^{n}+\frac{1}{3} n(-1)^{n}+\frac{7}{9} 2^{n} .
$$

[5 marks]
(v) Here,

$$
(1-2 x) A(x)=a_{0}+\left(a_{1}-2 a_{0}\right) x+\left(a_{2}-2 a_{1}\right) x^{2}+\ldots=1+0 x+1 \cdot 2 x^{2}+2 \cdot 3 x^{3}+\ldots
$$

Now

$$
\frac{1}{(1-x)^{3}}=1+\frac{2 \cdot 3}{2} x+\frac{3 \cdot 4}{2} x^{2}+\ldots, \text { so } \frac{2 x^{2}}{(1-x)^{3}}=1 \cdot 2 x^{2}+2 \cdot 3 x^{3}+3 \cdot 4 x^{4}+\ldots
$$

and this gives

$$
A(x)(1-2 x)=1+\frac{2 x^{2}}{(1-x)^{3}}=\frac{1-3 x+5 x^{2}-x^{3}}{(1-x)^{3}}, \text { so } A(x)=\frac{1-3 x+5 x^{2}-x^{3}}{(1-x)^{3}(1-2 x)} .
$$

[5 marks]
[Not part of question: using partial fractions we find

$$
A(x)=-\frac{2}{1-x}-\frac{2}{(1-x)^{3}}+\frac{5}{1-2 x}
$$

which gives $a_{n}=5 \cdot 2^{n}-\left(n^{2}+3 n+4\right)$.]
6 [All parts of this question are bookwork apart from (iv) which is unseen.]
(i) $c_{0}=1, c_{1}=1, c_{2}=c_{0} c_{1}+c_{1} c_{0}=2, c_{3}=c_{0} c_{2}+c_{1} c_{1}+c_{2} c_{0}=5, c_{4}=14, c_{5}=$ 42. [2 marks]
(ii) The constant term is 1 on both sides. For $n \geq 0$ the coefficient of x^{n+1} in RHS is the coefficient of x^{n} in $C(x)^{2}$ which is $\sum_{r=0}^{n} c_{r} c_{n-r}=c_{n+1}$. This is the same as the coefficient on LHS. [4 marks]
(iii) Let a_{n} be the number of shortest paths lying on or above the diagonal, and let b_{n} be the number which touch the diagonal only at $(0,0)$ and (n, n). We define $a_{0}=1$. Then
(a) $b_{n}=a_{n-1}$ for all $n>1$. This is because every shortest path must start by $(0,0) \rightarrow$ $(0,1)$ and end by $(n-1, n) \rightarrow(n, n)$, so the paths touching the diagonal only at the ends are exactly those on or above the line $y=x+1$, hence are in one-to-one correspondence with all shortest paths for an $n-1 \times n-1$ grid.
(b) Suppose the shortest path touches the diagonal $x=y$ for the last time at (r, r), where $0 \leq r \leq n-1$, apart from ending at (n, n). Considering the part of this path up to (r, r) and beyond (r, r) it follows that the number of such paths is $a_{r} b_{n-r}=a_{r} a_{n-r-1}$ by (a). Thus

$$
a_{n}=a_{0} a_{n-1}+a_{1} a_{n-2}+\ldots+a_{n-1} a_{0}, \quad n \geq 1,
$$

and clearly $a_{1}=1$. Hence the recurrence and the value a_{1} (or indeed a_{0}) are the same as for the Catalan numbers; hence the two sequences coincide. [4 marks]
(iv) In (iii) think of +1 as giving a one-unit step in the y-direction and -1 as giving a one-unit step in the x-direction. The condition on partial sums being ≥ 0 then says
precisely that $y-x \geq 0$ at each stage, so that the shortest paths on or above the diagonal $x=y$ in (iii) are in one-to-one correspondence with the sequences having non-negative partial sums. Hence the number is the same, namely c_{n}. [5 marks]
(v) The formula for the quadratic $x C(x)^{2}-C(x)+1=0$ gives $C(x)=(1 \pm$ $\sqrt{1-4 x}) / 2 x$ and so $x C(x)=\frac{1}{2}(1 \pm \sqrt{1-4 x})$. RHS must give 0 when $x=0$, so $x C(x)=$ $\frac{1}{2}\left(1-(1-4 x)^{1 / 2}\right)$.

Expanding $(1-4 x)^{1 / 2}$ by the binomial theorem gives a sum where the coefficient of x^{n+1} is

$$
\frac{1}{2} \frac{-1}{2} \frac{-3}{2} \ldots \frac{1-2 n}{2} \frac{(-4)^{n+1}}{(n+1)!}
$$

Cancelling the factors -2 leads to

$$
-1.3 .5 \ldots \ldots(2 n-1) \frac{2^{n+1}}{(n+1)!}=-2 \frac{(2 n)!}{n!(n+1)!}
$$

Divide by $-2 x$ to obtain $C(x)$, and we obtain

$$
c_{n}=\frac{(2 n)!}{n!(n+1)!}, \text { while the given formula is } \frac{1}{n+1} \frac{(2 n)!}{n!n!},
$$

which is clearly the same. [5 marks]

7 [This is all bookwork or similar to class or homework questions.]
Let s_{n} be the number of solutions of $n=a+2 b+4 c$ in non-negative integers. Then

$$
\begin{aligned}
S(t)=\sum_{n=1}^{\infty} s_{n} t^{n} & =\left(1+t+t^{2}+\ldots\right)\left(1+t^{2}+t^{4}+\ldots\right)\left(1+t^{4}+t^{8}+\ldots\right) \\
& =1 /(1-t)\left(1-t^{2}\right)\left(1-t^{4}\right)
\end{aligned}
$$

[3 marks]
Working up to terms in t^{9} we have $1 /(1-t)\left(1-t^{2}\right)=1+t+2 t^{2}+2 t^{3}+3 t^{4}+3 t^{5}+$ $4 t^{6}+4 t^{7}+5 t^{8}+5 t^{9}+\ldots$ and

$$
\begin{aligned}
S(t)= & 1+t+2 t^{2}+2 t^{3}+3 t^{4}+3 t^{5}+4 t^{6}+4 t^{7}+5 t^{8}+5 t^{9} \\
& +t^{4}\left(1+t+2 t^{2}+2 t^{3}+3 t^{4}+3 t^{5}\right)+t^{8}(1+t)+\ldots \\
= & 1+t+2 t^{2}+2 t^{3}+4 t^{4}+4 t^{5}+6 t^{6}+6 t^{7}+9 t^{8}+9 t^{9}+\ldots .
\end{aligned}
$$

[3 marks]
The product $\prod_{i=1}^{\infty}\left(1-t^{i}\right)^{-1}$ is a sum of terms $t^{a_{1}} t^{2 a_{2}} t^{3 a_{3}} \cdots$; by associating this term to the partition with a_{i} parts equal to i for each i, we see that the terms which multiply out to t^{n} correspond exactly to the partitions of n, so this product is equal to $P(t)$.

We may argue similarly for partitions into parts of length at most m : we restrict the product to $i \leq m$, so that $P_{m}(t)=\prod_{i=1}^{m}\left(1-t^{i}\right)^{-1}$. [3 marks]

The Ferrers graph of a partition λ is obtained by arranging the parts of λ in descending order as $\lambda_{1}, \ldots, \lambda_{k}$ and then taking a row of λ_{1} dots; below the first λ_{2} of these a second row of dots, and so on.

The graph of a partition with all parts of length at most m has at most m columns. Interchanging rows and columns carries one Ferrers graph to another. It determines a bijection, which carries a graph with at most m columns to one with at most m rows, representing a partition with at most m parts. Hence the number of partitions of n with at most m parts is equal to the number of partitions of m with all parts at most m. [3 marks]

The generating function $R(t)$ for partitions with at most 4 parts is then the same as $P_{4}(t)$, namely $R(t)=\prod_{i=1}^{4}\left(1-t^{i}\right)^{-1}=\left(1-t^{3}\right)^{-1} S(t)$. So $R(t)=\left(1+t^{3}+t^{6}+t^{9}\right) S(t)$, up to terms in t^{9}. Thus $R(t)=1+t+2 t^{2}+3 t^{3}+5 t^{4}+6 t^{5}+9 t^{6}+11 t^{7}+15 t^{8}+18 t^{9}+\ldots$. [2 marks]

The corresponding generating function for partitions with at most 3 parts is $P_{3}(t)$. Now $P_{3}(t)\left(1-t^{4}\right)^{-1}=P_{4}(t)=R(t)$ so $P_{3}(t)=\left(1-t^{4}\right) R(t)=1+t+2 t^{2}+3 t^{3}+4 t^{4}+$ $5 t^{5}+7 t^{6}+8 t^{7}+10 t^{8}+12 t^{9}+\ldots .[3$ marks $]$

Partitions with exactly 4 parts will be counted by $P_{4}(t)-P_{3}(t)$ and hence by $t^{4}+t^{5}+$ $2 t^{6}+3 t^{7}+5 t^{8}+6 t^{9}$ up to $n=9$.

There are thus $\mathbf{6}$ partitions of 9 with exactly 4 parts. These are ($6,1,1,1$), ($5,2,1,1$), $(4,3,1,1),(4,2,2,1),(3,3,2,1),(3,2,2,2)$, with Ferrers graphs

[3 marks]

8 [This is all bookwork or similar to class or homework questions.]
A function of N variables $\left\{x_{1}, \ldots, x_{N}\right\}$ is called symmetric if it is unchanged by any permutation of the x_{i}. [This is equivalent to saying it it is unchanged by any transposition of two of the x_{i}.] The elementary symmetric function σ_{n} is the sum of all products $x_{i_{1}} \ldots x_{i_{n}}$ with $1 \leq i_{1}<\ldots<i_{n} \leq N$. The power sum symmetric function π_{n} is the sum $\sum_{i=1}^{N} x_{i}^{n}$. Let us also write $\sigma_{0}=1, \pi_{0}=N$.

The Newton Identities state that

$$
n \sigma_{n}=\sigma_{n-1} \pi_{1}-\sigma_{n-2} \pi_{2}+\ldots+(-1)^{n-1} \sigma_{0} \pi_{n}
$$

for $n \geq 1$.
To prove them, write $E(t)=\sum_{0}^{N} \sigma_{r} t^{r}$ and $P(t)=\sum_{1}^{\infty} \pi_{r} t^{r}$. Then $E(t)=\prod_{1}^{N}\left(1+x_{i} t\right)$ so that

$$
\ln E(t)=\sum_{1}^{N} \ln \left(1+x_{i} t\right) \text {, so that } \frac{E^{\prime}(t)}{E(t)}=\sum_{1}^{N} \frac{x_{i}}{1+x_{i} t} .
$$

Further,

$$
\begin{aligned}
P(t) & =\left(x_{1}+x_{2}+\ldots+x_{N}\right) t+\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{N}^{2}\right) t^{2}+\left(x_{1}^{3}+x_{2}^{3}+\ldots+x_{N}^{3}\right) t^{3}+\ldots \\
& =\left(x_{1} t+x_{1}^{2} t^{2}+x_{1}^{3} t^{3}+\ldots\right)+\left(x_{2} t+x_{2}^{2} t^{2}+x_{2}^{3} t^{3}+\ldots\right)+\ldots+\left(x_{N} t+x_{N}^{2} t^{2}+x_{N}^{3} t^{3}+\ldots\right) \\
& =\frac{x_{1} t}{1-x_{1} t}+\frac{x_{2} t}{1-x_{2} t}+\ldots+\frac{x_{N} t}{1-x_{N} t},
\end{aligned}
$$

so that

$$
\frac{t E^{\prime}(t)}{E(t)}=-P(-t), \text { that is } t E^{\prime}(t)+E(t) P(-t)=0
$$

The Newton indentities now follow by comparing the coefficients of t^{n} on the two sides of this equation.
[6 marks]
From the first three Newton identities $\pi_{1}=\sigma_{1}, \pi_{2}-\pi_{1} \sigma_{1}=-2 \sigma_{2}, \pi_{3}-\pi_{2} \sigma_{1}+\pi_{1} \sigma_{2}=$ $3 \sigma_{3}$, we deduce in turn $\pi_{2}=\sigma_{1}^{2}-2 \sigma_{2}, \pi_{3}=\sigma_{1}^{3}-3 \sigma_{1} \sigma_{2}+3 \sigma_{3}$. [2 marks]
(i) $1 / \alpha+1 / \beta+1 / \gamma=(\beta \gamma+\gamma \alpha+\alpha \beta) / \alpha \beta \gamma=\sigma_{2} / \sigma_{3}$.
$1 / \alpha \beta+1 / \beta \gamma+1 / \gamma \alpha=(\alpha+\beta+\gamma) / \alpha \beta \gamma=\sigma_{1} / \sigma_{3}$
$1 / \alpha \beta \gamma=1 / \sigma_{3}$. [2 marks]
(ii)

$$
\begin{aligned}
s_{1} & =\alpha^{2}+\beta^{2}+\gamma^{2}=\sigma_{1}^{2}-2 \sigma_{2}, \\
s_{2} & =\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}+\alpha^{2} \beta^{2}=\sigma_{3}^{2}\left(1 / \alpha^{2}+1 / \beta^{2}+1 / \gamma^{2}\right) \\
& =\sigma_{3}^{2}\left(\left(\sigma_{2} / \sigma_{3}\right)^{2}-2 \sigma_{1} / \sigma_{3}\right)=\sigma_{2}^{2}-2 \sigma_{1} \sigma_{3}, \\
s_{3} & =\alpha^{2} \beta^{2} \gamma^{2}=\sigma_{3}^{2} .
\end{aligned}
$$

The required equation is $x^{3}-s_{1} x^{2}+s_{2} x-s_{3}=0$. [4 marks]
Each determinant δ_{r} changes sign when two columns are interchanged, hence if any two of α, β and γ are interchanged the quotient ϕ_{r} is unchanged, and thus is a symmetric function. [2 marks]

Manipulating determinants via subtracting one column from another and taking out common factors leads to expressing δ_{2} as $(\alpha-\beta)(\gamma-\alpha)(\beta-\gamma)$ and δ_{4} as this multiplied by

$$
\alpha^{2}+\alpha \beta+\beta^{2}+\alpha \gamma+\beta \gamma+\gamma^{2}=\sigma_{1}^{2}-\sigma_{2}
$$

[4 marks]

