
1. (a) Write down the number of rearrangements of the letters in the word
MERSEYSIDE. Calculate the number of these in which

(i) no two Es come together;

(ii) exactly two Es come together.

(b) Let X be the set {1, 2, 3, 4, . . . , 40}. A subset S is chosen from X, with
|S| = k, say. Find the smallest value of k which guarantees that two subsets of S
each with three members have the same sum. [The two subsets of S are allowed
to overlap but not of course to be identical.]

(c) Write down the coefficient of xn in the binomial expansion of (1+x)2n

and by writing this also as (1 + x)n(1 + x)n, or otherwise, deduce that
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Given n men and n women, show that the number of subsets of the 2n people
which contain the same number of men and women is

(

2n

n

)

. [Note that this
includes the empty set, with no men and no women!]

2.

Explain how to calculate the number of integer solutions of the equation

x1 + x2 + x3 + . . . + xn = r,

where all the xi are ≥ 0.

(a) Find the number of integer solutions of

x1 + x2 + x3 + x4 < 25,

where the xi are (i) all ≥ 0, (ii) all ≥ 3.

(b) I have 12 books, all different. How many different ways are there of
placing the books on 3 shelves, with at least one book on each shelf? [Note that
the order of the books left to right on any shelf is important.]

(c) Consider a sequence of 15 symbols, each a 0 or a 1, in which there are
eight 1’s and seven 0’s. For example

111001011100001

This sequence has seven ‘blocks’ of equal symbols, namely 111, 00, 1, 0, 111,
0000, 1. Calculate the number of sequences of 15 symbols 0, 1 with eight 1’s
and seven 0’s which contain seven blocks. Note that the sequence can start with
either a 1 or a 0.
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3. State Hall’s selection theorem.

(a) A rectangular array of squares is given, from which a subset B of the
squares is excluded.

(i) Show how the problem of constructing a perfect cover of the re-
maining squares by 2 × 1 tiles can be reformulated in terms of selecting distinct
representatives for a suitable collection of sets, describing carefully what sets are
to be used.

(ii) For the array (a) below, where excluded squares are shown as �,
list a suitable collection of sets for this reformulation.

(iii) Starting from the unsuccessful attempt (b) to cover the unmarked
squares by 2× 1 tiles, use the algorithm described in class to find a perfect cover.

(iv) For the board (c) either find a perfect cover by 2 × 1 tiles or
prove that none exists.

( a ) ( b ) ( c )

(b)

Nine children 1, 2, . . . , 9 are invited to a children’s party organized by Mr Hall,
whose own children are 1, 2 and 3. Nine different presents A, B, . . ., I have been
bought for the children and after much consultation with all the parents Mr Hall
draws up a table showing which presents are acceptable for the various children:

1 2 3 4 5 6 7 8 9
ABCF ADI EFGH DG DI ABDEF BCDEH ADG AGI

Prove that eight, but not all nine, of the children can be given a suitable
present.

A tenth present, J, is purchased which Mr Hall knows will be suitable for any
of his own children. Does this help the situation? [Justify your answers clearly.]

[20 marks]
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4. (a) Use the principle of inclusion-exclusion to find the number of integers
in {1, 2, 3, . . . , 2000} which are divisible by at least one of 2, 3 and 5. (State the
form of the principle which you are using.)

(b) (i) Define a rook polynomial. Give rules which will enable the rook
polynomial of any board to be calculated.

(ii) Calculate the rook polynomial of the 3×3 board shown. The open
squares represent the six squares actually present and the blank spaces the three
squares pruned.

2 2

2 2

2 2

(iii) The first two rows of a Latin square are

1 2 3 4 5
4 3 5 1 2

Use the forbidden positions formula (which should be clearly stated) to find how
many possibilities there are for the third row. [20 marks]

5. Solve the following recurrence relations, (i)–(iv). In each case you should
find an expression for an and for the generating function A(x) =

∑

∞

n=0
anx

n.

(i) an+2 = 2an+1 + 3an, a0 = a1 = 2.

(ii) an+2 = 2an+1 + 3an + 1, a0 = a1 = 2.

(iii) an+1 = 4an + 2n+1, a0 = 3.

(iv) an+2 = an+1 + 2an + (−1)n, a0 = a1 = 1.

(v) For the following recurrence relation, find the generating function A(x)
only.

an+1 = 2an + n(n + 1), a0 = 1.
[20 marks]
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6. The Catalan numbers {cn} are defined recursively by the relations

c0 = 1, cn+1 =

n
∑

r=0

crcn−r, n ≥ 0.

(i) Write down the sequence of these numbers up to c5.

(ii) Prove, by comparing the terms in xn+1, that the generating function

C(x) =

∞
∑

n=0

cnx
n

for the Catalan numbers satisfies the quadratic equation

C(x) = 1 + xC(x)2.

(iii) Write an for the number of shortest paths from (0, 0) to (n, n) in the
(x, y)-plane, every segment of unit length being along one of the grid lines x = r
or y = s where r and s are integers in {0, 1, . . . , n}, these paths never going below
the diagonal x = y. Find a recurrence relation for an and deduce that an = cn

for all n ≥ 1.

(iv) Explain why cn also counts the number of sequences containing n
numbers 1 and n numbers −1 such that every partial sum of the sequence is
≥ 0. [For example, with n = 3, the sequence 1, 1,−1, 1,−1,−1 has this property
since the partial sums are 1, 1 + 1, 1 + 1 − 1, 1 + 1 − 1 + 1, 1 + 1 − 1 + 1 − 1 and
1 + 1 − 1 + 1 − 1 − 1, all of which are ≥ 0. It may help to consider an analogy
with (iii).]

(v) Using the equation C(x) = 1 + xC(x)2 show that

xC(x) =
1

2
(1 −

√
1 − 4x),

and deduce that

cn =
1

n + 1

(

2n

n

)

.

[20 marks]
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7. Obtain a formula for the generating function S(t) =
∑

∞

n=1
sntn, where sn

is the number of solutions of n = a + 2b + 4c in non-negative integers.

Calculate S(t) up to the term in t9.

Establish an expression for the generating function P (t) which enumerates
the number of partitions of the positive integer n. Find also the function Pm(t)
which enumerates the number of partitions of n into parts of length ≤ m.

Define the term Ferrers graph. Use Ferrers graphs to establish a bijection
between partitions of n with at most m parts and partitions of n into parts of
length ≤ m.

Hence write down the generating function R(t) which enumerates partitions
of n with at most 4 parts.

Calculate R(t) up to the term in t9, and hence find the number of partitions
of 9 with at most 4 parts.

Show that (1 − t4)R(t) enumerates partitions of n with at most 3 parts.

Use your calculations to determine the number of partitions of n with exactly
4 parts for all n ≤ 9. Exhibit the corresponding Ferrers graphs in the case n = 9.

[20 marks]

8. Define the term symmetric function. For any positive integer n, define the
elementary symmetric function σn and the power sum symmetric function πn.
State and prove the Newton Identities.

Express π3 in terms of the elementary symmetric functions.

Obtain, in terms of the elementary symmetric functions of α, β and γ,

(i) the elementary symmetric functions of 1/α, 1/β, 1/γ, and

(ii) the equation with roots α2, β2, γ2.

Write δr for the determinant

det





1 1 1
α β γ
αr βr γr





Show that, for each r ≥ 3, φr = δr/δ2 is a symmetric function of α, β and γ.
Express φ4 in terms of their elementary symmetric functions.

[20 marks]
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