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1 (a) (x + y)n =
∑n

r=0

(
n
r

)
xn−ryr. Putting x = 1 and y = −1 gives

0 =
∑n

r=0(−1)r
(

n
r

)
.

With x = 1, y = 1 we have 2n =
∑n

r=0

(
n
r

)
.

Add, and divide by 2 to get 2n−1 =
(

n
0

)
+
(

n
2

)
+ · · ·; the odd terms are

equal to the even terms by the first equation.

(b)
(
2n
2

)
counts the number of ways of selecting two objects from 2n.

Make the selection by grouping the 2n objects into two groups of n. Then
either select 2 from the first group, or the second group each in

(
n
2

)
ways,

or select one from each group, by choosing one from the first group in n
ways followed by one from the second group, also in n ways, making 2

(
n
2

)
for the selections of pairs in the same group, plus n2 for the choices from the
separate groups.

Group the kn objects into k groups of n. Count selections of pairs from
single groups in k

(
n
2

)
ways and pairs from separate groups in

(
k
2

)
× n2 ways,

by first selecting the pair of groups, and then the elements one from each,
making a total of k

(
n
2

)
+
(

k
2

)
× n2.

(c) There are
11!

6!2!
= 27720 anagrams.

For each anagram of the 5 letters ALLMW insert the six Os in the six
positions × between the letters or at either end

(×A×L×L×M ×W×). There are
5!

2!
= 60 anagrams and one way to place

the letters O, making 60 ways in total.

For each anagram of the 5 letters ALLMW insert OO in any of the six
positions between the letters or at either end. Then insert the remaining four

Os in any of the five positions × which are left. There are
5!

2!
= 60 anagrams,

6 ways to place the OO and
(
5
4

)
= 5 ways to place the four single letters O,

making 1800 ways in total.

(d) (i) All three numbers in the subset must be odd. Since there are 6
odd numbers available there are

(
6
3

)
= 20 choices with all three odd.

(ii) Either all three numbers in the subset are odd, making
(
6
3

)
= 20

subsets, or two are even and one is odd. Choose the odd number in 6 ways
and the two even numbers in

(
7
2

)
= 21 ways, making a further 6× 21 = 126

subsets. The total number of possibilities is then 20 + 126 = 146 subsets.

(iii) There are altogether
(
6
3

)
+
(
6
2

)
+
(
6
1

)
= 20 + 15 + 6 = 41 non-

empty subsets of A with at most 3 numbers. Possible totals range from
−6 − 5 − 4 = −15 to 4 + 5 + 6 = 15, making 31 possibilities, so there are
more sets than totals. The pigeonhole principle then gives at least two sets
with the same total.
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2

(a) (i) We can arrange r objects and n−1 boundary markers in a row in(
r+n−1

n−1

)
ways; now assign the objects between markers i−1 and i to container

i.

Any solution determines a distribution by putting ki objects into con-
tainer i. Conversely, given any distribution, count the number of objects ki

in container i to get a solution to the equations. Write ki for the number
of items of variety i chosen. Then again any choice gives a solution to the
equations, while any solution gives the number of items of each variety to be
included in the selection, totalling r.

(ii) Write the numbers as x1x2x3x4. Then x1 + x2 + x3 + x4 = 9 and
x1 ≥ 1, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0. Put x1 = 1 + x′1 and then count solutions of
x′1 + x2 + x3 + x4 = 8 in non-negative integers, to get

(
8+3
3

)
= 165 solutions.

If no digits are to be 0 then write xi = 1 + x′i in each case and solve
x′1 + x′2 + x′3 + x′4 = 5 in non-negative integers in

(
5+3
3

)
= 56 ways.

(b) (i) The resulting codes are all anagrams of the 12 letter word
with 8 asterisks and four different numbers, making a total of 12!

8!
= 990×12 =

11880. [Or place the numbers 1,2,3,4 in one of 12 different positions].

(ii) First arrange the numbers in order in 44 ways. Then put the aster-
isks in the five places around them, with x1 asterisks before the first number,
then x2 between the first two numbers, leading to x1 + x2 + · · · + x5 = 8
with xi ≥ 0. There are then

(
8+4
4

)
= 495 ways to do this making a total of

495× 256 = 126720 codes.

(iii) Arrange the four numbers in order, in 4! ways and then fill in
asterisks as before, but this time we must have x2, x3, x4 > 0. Take x2 =
1 + x′2, x3 = 1 + x′3, x4 = 1 + x′4 leading to

(
5+4
4

)
arrangements of asterisks,

and a total of 4!×
(
5+4
4

)
= 9× 8× 7× 6 = 9× 336 = 3024 codes.

Alternatively select 4 of the 9 gaps between and at either end of the 8
asterisks, in

(
9
4

)
ways, and then arrange the four numbers in these four places

in 4! ways, making a total of
(
9
4

)
× 4! = 9× 8× 7× 6 = 3024 codes as above.

3 Hall’s Selection Theorem states that if {Si | i ∈ I} is a finite collection
of subsets of S then it is possible to choose distinct representatives xi ∈ Si if
and only if, for any subset J of I, the union of the corresponding sets Si has
at least |J | elements.

(a) (i) Label the squares w or b as on a chessboard. In any covering a tile
will pair a white and a black square. Check that there are the same number
of squares of each colour. For each white square wi write Si for the set of
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black squares adjacent to it. A choice of distinct representatives {xi} of the
sets Si will determine a perfect cover, by placing a tile to cover wi and xi.
Conversely, any perfect cover will determine distinct representatives of the
sets Si in this way.

(ii)

w1 b1 w2 b2 w3 b3

b4 w4 b5 w5 � �
w6 � � b6 w7 b7

� � b8 w8 � w9

� b9 w10 b10 w11 b11

w1 b1 � � w2 �
b2 w3 b3 � b4 w4

w5 b5 � � w6 b6

b7 � b8 w7 b9 w8

w9 b10 w10 � w11 b11

For the first board the list is

w 1 2 3 4 5 6 7 8 9 10 11
b 1, 4 1,2, 5 2,3 1, 4,5 2, 5,6 4 6,7 6,8, 10 7,11 8,9, 10 10, 11

For the second board the list is

w 1 2 3 4 5 6 7 8 9 10 11
b 1, 2 4 1, 2, 3, 5 4, 6 2, 5, 7 4, 6, 9 8, 9 6, 9, 11 7, 10 8, 10 9, 11

(iii) There is a tiling, indicated in bold on the list for the first board;
a tiling could equally be shown instead on a diagram.

For the second board there are 5 white squares w2, w4, w6, w8, w11 with
only 4 adjacent black squares b4, b6, b9, b11, so no selection, and hence no
tiling, is possible.

(b) (i) One possibility is to house A, B, C,D,E, F, G, H, I in rooms 3, 4, 9,
8, 10, 7, 5, 6, 1 respectively.

It is not possible to find suitable rooms for all 10 people since only the
five rooms {1, 4, 7, 9, 10} are suitable for the six people {B, C, E, F, I, J}.

(ii) In the present room allocation the rooms 1, 9 and 10 are occupied
by I, C, E already. But C is willing to share room 4 with B, leaving room 9
for J .

To accommodate the driver, find who is in rooms 8 and 10.

These are D and E. Moving D to the vacant room 2 allows a suitable
allocation.

For example A, B, C,D, E, F, G, H, I, J and the driver in rooms 3, 4, 4, 2,
10, 7, 5, 6, 1, 9, 8 respectively.

[Many other allocations are possible].
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4 (i) Given a collection A of squares on a rectangular board, write
rk(A) for the number of ways of selecting k squares of A, no two in the same
row or column. The rook polynomial of A is R(A) =

∑
k rk(A)xk.

If S is any square of A, and A′ is obtained from A by removing S and
A′′ by removing all squares on the same row or column as S, then R(A) =
R(A′) + xR(A′′).

If A = A1 ∪A2, where no element of A1 is on the same row or column as
an element of A2, then R(A) = R(A1)R(A2).

The number of ways of selecting m squares no two in the same row or
column on an m× n board with the squares of B forbidden is

1

(n−m)!
(n!− (n− 1)!r1(B) + (n− 2)!r2(B)− . . . + (−1)m(n−m)!rm(B)).

(ii) The inclusion-exclusion formula says that if {Ai | 1 ≤ i ≤ n} are
subsets of U , then the number of elements of U belonging to none of the sets
Ai is

∑
I⊂{1,···,n}

(−1)|I|

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ ,
where

⋂
i∈∅ is interpreted as U .

Apply the formula where U is the set of ways to choose m squares with
no two in the same row or column, and the subset Ai are those selections
where the square in row i lies in the forbidden set B.

(iii) The rook polynomial can be calculated starting with the marked
square as S and applying one of the rules

R

� 2

� �
� �

 = R

�
� �

� �

+ xR

(
� �

�

)

= R

�
�

� �

+ xR
(
� �

)
+ xR

(
� �

�

)

= R(�)R

(
� �

�

)
+ x(1 + 2x) + xR

(
� �

�

)
= (1 + x)(1 + 3x + x2) + x(1 + 2x) + x(1 + 3x + x2)

= (1 + 2x)(1 + 4x + x2)

= 1 + 6x + 9x2 + 2x3.
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(iv) The forbidden positions board is B =

� �
� �

� �
� �

� �
� �

. The

boards B1, formed from rows 1,2 and 4, and B2, formed from rows 3,5 and
6, have no entries in the same column, so R(B) = R(B1)R(B2). Now

B1 =
� �
� �

� �
and B2 =

� �
� �
� �

.

From the calculation in (ii) we have R(B1) = R(B2) = 1+6x+9x2 +2x3.
Thus

R(B) = (1 + 6x + 9x2 + 2x3)2

= 1 + 12x + (9 + 36 + 9)x2 + (2 + 54 + 54 + 2)x3 + (12 + 81 + 12)x4 + 36x5 + 4x6

= 1 + 12x + 54x2 + 112x3 + 105x4 + 36x5 + 4x6.

The forbidden positions rule gives

6!− 12× 5! + 54× 4!− 112× 3! + 105× 2!− 36 + 4

= 720− 12× 120 + 54× 24− 672 + 210− 32

= 82

possible choices for the third row.

5 (i) Write A(x) =
∑∞

n=0 anx
n and C(x) = 1 − 3x + 2x2. Then

C(x)A(x) = (1 − 3x + 2x2)A(x) = b0 + b1x. So b0 + b1x = (1 − 3x +
· · ·)(1 + 4x + · · ·) = 1 + x.

Hence

A(x) =
1 + x

1− 3x + 2x2
=

1 + x

(1− x)(1− 2x)
=

A

1− x
+

B

1− 2x
.

Partial fractions gives A = −2, B = 3, and A(x) = −2
∑

xn + 3
∑

2nxn, so
an = 3× 2n − 2.
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(ii)

(1− 4x + 4x2)A(x) = b0 + b1x +
∞∑

n=0

(an+2 − 4an+1 + 4an)xn+2.

LHS = (1− 4x + · · ·)(1 + x + · · ·) = 1− 3x + · · ·, so

(1− 4x + 4x2)A(x) = 1− 3x +
∞∑

n=0

xn+2 = 1− 3x +
x2

1− x
=

1− 4x + 4x2

1− x
.

Then A(x) =
1

1− x
and an = 1.

(iii) Take C(x) = 1− 2x. Then

(1− 2x)A(x) = b0 +
∞∑

n=0

(an+1 − 2an)xn+1 = 0 +
∞∑

n=0

3n+1xn+1 =
3x

1− 3x
.

Then

A(x) =
3x

(1− 2x)(1− 3x)
=

A

1− 2x
+

B

1− 3x
.

Gives A = −3, B = 3 and so an = −3× 2n + 3× 3n = 3(3n − 2n).

(iv) Again take C(x) = 1− 2x.

(1− 2x)A(x) = b0 +
∞∑

n=0

(an+1 − 2an)xn+1 = 1 +
∞∑

n=0

2n+1xn+1 =
1

1− 2x
.

Then A(x) =
1

(1− 2x)2
, giving an = (n + 1)2n.

(v) Here C(x) = 1− 3x, giving

(1− 3x)A(x) = b0 +
∞∑

n=0

(an+1 − 3an)xn+1 = b0 + 2
∞∑

n=0

(n + 1)xn+1.

Now b0 = 0, so RHS = 2(x + 2x2 + 3x3 + · · ·) =
2x

(1− x)2
.

Then

A(x) =
2x

(1− x)2(1− 3x)
.

Write this as

2x

(1− x)2(1− 3x)
=

A

1− 3x
+

B

(1− x)
+

C

(1− x)2
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to get 2x = A(1 − x)2 + (1 − 3x)(B(1 − x) + C) Put x = 1 to get C = −1.
Constant term gives A + B + C = 0 while term in x2 gives A + 3B = 0, so
C = 2B, and B = −1

2
, A = 3

2
, C = −1.

Then an = 3
2
3n − 1

2
− (n + 1) = 1

2
(3n+1 − 1)− (n + 1).

6 (i) c0 = 1, c1 = 1, c2 = c0c1 + c1c0 = 2, c3 = c0c2 + c1c1 + c2c0 =
5, c4 = 14, c5 = 42.

(ii) The constant term is 1 on both sides. For n ≥ 0 the coefficient
of xn+1 in RHS is the coefficient of xn in C(x)2 which is

∑n
r=0 crcn−r = cn+1.

This is the same as the coefficient on LHS.

(iii) Number the points 1, . . . , 2n around the circle. The line from
point number 1 must have its other end at an even number, for otherwise
there would be an odd number of points on each side of the line, which cannot
be arranged in pairs without the line being crossed. If point 1 is joined to
point 2r, then there are 2(r−1) points on one side and 2(n−r) on the other.
In each case, the problem of pairing up the points is the same as the original
problem, but with a different value of n, so the numbers of solutions are ar−1

and an−r. Thus the total number of solutions with 1 joined to 2r is ar−1an−r

for 1 < r < n, and is an−1 when r = 1 or r = n. Then an =
∑n

r=1 ar−1an−r,
provided n ≥ 1 taking a0 = 1. This gives the same initial condition and
recursive formula as the Catalan numbers, so an = cn for all n.

(iv) Write an for the number of ways of dissecting an (n + 2)-gon into
n triangles, setting a0 = 1.

Label the vertices of (n + 2)-gon A0, A1, . . . , An+1 in order. Count the
dissections in which the triangle with edge A0An+1 has third vertex at Ar.

There is an (r + 1)-gon to the other side of A0Ar which can be dissected
in ar−1 ways, and an (n−r+2)-gon to the other side of ArAn+1 which can be
dissected in an−r ways, making a total of ar−1an−r ways, with the convention
a0 = 1 dealing with the cases r = 1, n. The total is then an =

∑n
r=1 ar−1an−r.

Then an+1 =
∑n

r=0 aran−r giving the same recursion and initial conditions as
the Catalan numbers, so an = cn.

(v) The formula for the quadratic xC(x)2−C(x)+1 = 0 gives C(x) =
(1 ±

√
1− 4x)/2x and so xC(x) = 1

2
(1 ±

√
1− 4x). RHS must give 0 when

x = 0, so xC(x) = 1
2
(1− (1− 4x)1/2).

Expanding (1 − 4x)1/2 by the binomial theorem gives a sum where the
coefficient of xn+1 is 1

2
−1
2

−3
2

. . . 1−2n
2

(−4)n+1/(n + 1)!. Cancelling the factors

-2 leads to −1.3.5. . . . .(2n− 1).2n+1/(n + 1)! = −2 (2n)!
n!(n+1)!

. Divide by −2x to

obtain C(x), and the formula for cn follows. [20 marks]
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7 Let sn be the number of solutions of n = a + 3b + 4c in non-negative
integers. Then

S(t) =
∞∑

n=1

snt
n = (1 + t + t2 + . . .)(1 + t3 + t6 + . . .)(1 + t4 + t8 + . . .)

= 1/(1− t)(1− t3)(1− t4).

Then S(t) = 1 + t + t2 + 2t3 + 3t4 + 3t5 + 4t6 + 5t7 + 6t8 + 7t9 + 8t10 + · · ·
The product

∏∞
i=1(1−ti)−1 is a sum of terms ta1t2a2t3a3 · · ·; by associating

this term to the partition with ai parts equal to i for each i, we see that the
terms which multiply out to tn correspond exactly to the partitions of n, so
this product is equal to P (t).

We may argue similarly for partitions into parts of length at most m we
restrict the product to i ≤ m, so that Pm(t) =

∏m
i=1(1− ti)−1.

The Ferrers graph of a partition λ is obtained by arranging the parts of
λ in descending order as λ1, . . . , λk and then taking a row of λ1 dots; below
the first λ2 of these a second row of dots, and so on.

The graph of a partition with all parts of length at most m has at most
m columns. Interchanging rows and columns carries one Ferrers graph to
another. It determines a bijection, which carries a graph with at most m
columns to one with at most m rows, representing a partition with at most
m parts. Hence the number of partitions of n with at most m parts is equal
to the number of partitions of m with all parts at most m.

The generating function R(t) for partitions with at most 4 parts is then
the same as P4(t), namely R(t) =

∏4
i=1(1 − ti)−1 = (1 − t2)−1S(t). So

R(t) = (1 + t2 + t4 + t6 + t8 + t10)S(t), up to terms in t10. Thus R(t) =
1 + t + 2t2 + 3t3 + 5t4 + 6t5 + 9t6 + 11t7 + 15t8 + 18t9 + 23t10 + . . ..

The corresponding generating function for partitions with at most 3 parts
is P3(t). Now P3(t)(1 − t4)−1 = P4(t) = R(t) so P3(t) = (1 − t4)R(t) =
1 + t + 2t2 + 3t3 + 4t4 + 5t5 + 7t6 + 8t7 + 10t8 + 12t9 + 14t10 + . . ..

Partitions with exactly 4 parts will be counted by P4(t)−P3(t) and hence
by t4 + t5 + 2t6 + 3t7 + 5t8 + 6t9 + 9t10 up to n = 10.

There are thus 9 partitions of 10 with exactly 4 parts. These are (7,1,1,1),
(6,2,1,1), (5,3,1,1), (4,4,1,1), (5,2,2,1), (4,3,2,1), (4,2,2,2), (3,3,2,2), (3,3,3,1),
with Ferrers graphs

× × × × × × ×
×
×
×

,

× × × × × ×
× ×
×
×

,

× × × × ×
× × ×
×
×

,

× × × ×
× × × ×
×
×

,
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× × × × ×
× ×
× ×
×

,

× × × ×
× × ×
× ×
×

,

× × × ×
× ×
× ×
× ×

,

× × ×
× × ×
× ×
× ×

,

× × ×
× × ×
× × ×
×

[20 marks]

8 (a) A function of N variables {x1, . . . , xN} is called symmetric if it is
unchanged by any permutation of the xi. The elementary symmetric function
σn is the sum of all products xi1 . . . xin with 1 ≤ i1 < . . . < in ≤ N . The
power sum symmetric function πn is the sum

∑N
i=1 xn

i . Let us also write
σ0 = 1, π0 = N.

The Newton Identities state that rσr =
∑r

i=0(−1)i−1σr−iπi for all r, tak-
ing σr = 0 when r > N .

To prove them, write E(t) =
∑N

r=0 σrt
r =

∏N
i=1(1 + xit).

Then ln(E(t)) =
∑N

i=1 ln(1 + xit).

Differentiate with respect to t to get

E ′(t)

E(t)
=

N∑
i=1

xi

1 + xit
=

N∑
i=1

(
xi

∞∑
m=0

(−xit)
m

)

=
∞∑

m=0

(
N∑

i=1

xi(−xi)
m

)
tm =

∞∑
m=0

(−1)m

(
N∑

i=1

xm+1
i

)
tm

=
∞∑

m=0

(−1)mπm+1t
m.

Multiply up by E(t) to get E ′(t) = σ1 + 2σ2t + · · · + rσrt
r−1 + · · · =

(π1 − π2t + π3t
2 − · · ·)(1 + σ1t + σ2t

2 + · · ·).
Equate the coefficients of tr−1 for each r to get Newton’s identities (New-

ton’s relations).

(b) (i) The polynomial (x− α)(x− β)(x− γ) has the form x3 − σ1x
2 +

σ2x− σ3 where σi are the elementary symmetric functions of α, β, γ.

So here α + β + γ = 2, αβ + βγ + γα = −1 and αβγ = −5.

From the first three Newton identities π1 = σ1, π2 − π1σ1 = −2σ2, π3 −
π2σ1 + π1σ2 = 3σ3, we deduce in turn π2 = σ2

1 − 2σ2 = 4 + 2 = 6, π3 =
σ3

1 − 3σ1σ2 + 3σ3 = 8 + 6− 15 = −1.

(ii) Put x1 = α2, x2 = β2, x3 = γ2. The required polynomial is then
x3 − s1x

2 + s2x − s3 = 0, where s1 = x1 + x2 + x3, s2 = x1x2 + x2x3 + x3x1

and s3 = x1x2x3.
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Now

s1 = 6

s2 = (α2β2 + β2γ2 + γ2α2 = (αβ + βγ + γα)2 − 2(α + β + γ)(αβγ) = 1 + 20

s3 = (α2β2γ2) = (αβγ)2 = 25.

The polynomial is then x3 − 6x2 + 21x− 25.


