
1. (a) Use the binomial expansion of (x + y)n to show that
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(b) Give a combinatorial argument to show that
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= 2
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Suggest, without proof, a similar formula for
(
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2

)

.

(c) Write down the number of anagrams of the word WOOLAMOOLOO?

How many anagrams have no appearance of OO?

How many have just one appearance of OO?

(d) (i) Count the number of ways of selecting a subset of 3 numbers from
{0,±1,±2,±3,±4,±5,±6} so that the product of the numbers is odd.

(ii) Count the number of ways of selecting a subset of 3 numbers from
{0,±1,±2,±3,±4,±5,±6} so that the sum of the numbers is odd.

(iii) Let A be any selection of 6 numbers from {0,±1,±2,±3,±4,±5,±6}.
Show that there must always be two subsets of A each with at most 3 numbers,
which have the same total. [20 marks]

2. (a) (i) Derive a formula for the number of ways of distributing r identical
objects into n distinct containers.

Show why this formula counts the number of solutions to the equation

k1 + k2 + · · ·+ kn = r

for non-negative integers k1, . . . , kn, and why it also counts the number of ways of
selecting r items from a choice of n distinct varieties, where the order of selection
is unimportant.

(ii) How many numbers between 1000 and 9999 have the sum of their
digits equal to 9?

How many of these have no digit equal to 0?

(b) The code for a safe is a sequence of 12 symbols consisting of eight
asterisks (∗), and four numbers from the set {1, 2, 3, 4}.

How many possible codes are there:

(i) if all four numbers must be different?

(ii) with no restrictions on the choice of numbers?

(iii) if all four numbers must be different and there is at least one
asterisk between each pair of numbers? [20 marks]
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3. State Hall’s selection theorem.

(a) A rectangular array of squares is given, from which a subset B of the
squares is excluded.

(i) Show how the problem of constructing a perfect cover of the re-
maining squares by 2 × 1 tiles can be reformulated in terms of selecting distinct
representatives for a suitable collection of sets, describing carefully what sets are
to be used.

(ii) For each array below, where excluded squares are shown as �,
list a suitable collection of sets for this reformulation.

(iii) Using this collection of sets decide, with reasons, whether or not
there is a perfect cover of the squares shown as 2 by 2 × 1 tiles.

2 2 2 2 2 2

2 2 2 2 � �

2 � � 2 2 2

� � 2 2 � 2

� 2 2 2 2 2

2 2 � � 2 �

2 2 2 � 2 2

2 2 � � 2 2

2 � 2 2 2 2

2 2 2 � 2 2

(b) A tour party arrives for a night at a busy seaside hotel, where they are
allocated individual rooms by the management.

The initial arrangements turn out not to suit everybody. Some of the party
want larger beds, others are upset by the lack of a sea view. Some complain that
their rooms are too far from the restaurant, and yet others that they are too close
to the bar, and want non-smoking rooms.

After some consultation the tour operator manages to collect details of the
rooms that would be acceptable to each person, and draws up the following table.

Person Room Person Room

Ann 1, 2, 3, 6 Beth 4, 9
Carole 1, 4, 9 Diana 2, 3, 4, 5, 8
Eleanor 4, 7, 10 Frances 1, 7, 9
Gerry 1, 2, 4, 5, 6 Helen 4, 5, 6, 7
Irene 1, 4, 7 Jean 1, 9, 10

.

(i) Find an allocation which will suit everyone except Jean. Show
that it is not possible to allocate satisfactory rooms for the whole party.

(ii) To add to the operator’s problems it appears that no provision
had been made for the driver, who wants one of the smoking rooms 8, 10.

Luckily Beth and her sister Carole are prepared to share one of the large
rooms 4, 9. Show how everyone’s requirements can now be met.

[Justify your answers clearly.] [20 marks]
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4. (i) Define a rook polynomial. Give rules which will enable the rook poly-
nomial of any board to be calculated.

State the ‘forbidden positions’ formula.

State the inclusion-exclusion formula, and sketch briefly how this is used to
prove the forbidden positions formula.

(ii) Calculate the rook polynomial of the 3 × 3 board shown.

� �

� �

� �

(iii) The first two rows of a Latin square are

1 4 5 6 2 3
2 1 6 3 4 5 .

Find how many possibilities there are for the third row. [20 marks]

5. Solve the following recurrence relations. In each case you should find an
expression for an and for the generating function A(x) =

∑

∞

n=0
anxn.

(i) an+2 = 3an+1 − 2an, a0 = 1, a1 = 4.

(ii) an+2 = 4an+1 − 4an + 1, a0 = a1 = 1.

(iii) an+1 = 2an + 3n+1, a0 = 0.

(iv) an+1 = 2an + 2n+1, a0 = 1.

(v) an+1 = 3an + 2(n + 1), a0 = 0. [20 marks]
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6. The Catalan numbers {cn} are defined recursively by the relations

c0 = 1, cn+1 =

n
∑

r=0

crcn−r, n ≥ 0.

(i) Write down the sequence of these numbers up to c5.

(ii) Prove, by comparing the terms in xn+1, that the generating function

C(x) =

∞
∑

n=0

cnxn

for the Catalan numbers satisfies the quadratic equation

C(x) = 1 + xC(x)2.

(iii) Write an for the number of ways to join 2n points on the circumference
of a circle in pairs by n straight lines drawn across the circle which do not intersect
each other. Find a recurrence relation expressing an+1 in terms of ai, i ≤ n and
deduce that an = cn for all n ≥ 1.

(iv) Prove similarly that cn, n > 0 counts the number of ways of cutting
up a convex (n + 2)-gon into n triangles by cuts from vertex to vertex.

(v) Using the equation C(x) = 1 + xC(x)2 show that

xC(x) =
1

2
(1 −

√
1 − 4x),

and deduce that

cn =
(2n)!

n!(n + 1)!
.

[20 marks]
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7. Obtain a formula for the generating function S(t) =
∑

∞

n=1
sntn, where sn

is the number of solutions of n = a + 3b + 4c in non-negative integers.

Calculate S(t) up to the term in t10.

Establish an expression for the generating function P (t) which enumerates
the number of partitions of the positive integer n. Find also the function Pm(t)
which enumerates the number of partitions of n into parts of length ≤ m.

Define the term Ferrers graph. Use Ferrers graphs to establish a bijection
between partitions of n with at most m parts and partitions of n into parts of
length ≤ m.

Hence write down the generating function R(t) which enumerates partitions
of n with at most 4 parts.

Show that R(t) = (1 − t2)−1S(t) and hence find the number of partitions of
10 with at most 4 parts.

Show that (1 − t4)R(t) enumerates partitions of n with at most 3 parts.

Use your calculations to determine the number of partitions of n with exactly
4 parts for all n ≤ 10. Exhibit the corresponding Ferrers graphs in the case
n = 10. [20 marks]

8. (a) Define the term symmetric function. For any positive integer n, define
the elementary symmetric function σn and the power sum symmetric function πn.
State and prove the Newton Identities.

(b) Let α, β and γ be the roots of the equation x3 − 2x2 − x + 5 = 0.

(i) Write down their elementary symmetric functions, and find the
values of α2 + β2 + γ2 and α3 + β3 + γ3.

(ii) Find the cubic equation with roots α2, β2, γ2. [20 marks]
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