2MP63 1999 Solutions

1. (a) A group is a set G with a law of composition satisfying the following
axioms:

(G1) for any z,y € G, =y is in G,
(G2) for any z,y,z in G, z(yz) = (zy)z;
(G3) there is an element 1 in G such that for all g € G,

gl=g=1g.

(G4) given an element g € G, there is an element g~ of G with

g9l =1=g"'g.

[4 marks|
The inverse of X is X itself and the inverse of Y is the matrix

(1)
2 marks]

Since X = X!, X2 =]. Also, we note that Y2 =Y !, so Y has order 3.
[2 marks|
Thus it is clear that (X) contains I,Y,Y? X, XY, XY?2 To show that these
six matrices form a group, we compute their multiplication table:

1 Y Y? X XY X%
1 1 Y Y? X XY X%
Y Y Y? I Xy? X XY
Y? | Y? 1 Y XY XY? Y
X X XY Xy? I Y? Y
XY | Xy Xy? X Y 1 \&
XY? | Xy? X XY Y? Y I

[6 marks|
This group is non-abelian since XY and Y X are unequal ([1 mark]).

Let
a b
2=(%a)

be the required matrix. Then the condition that X7 = ZX yields the matrix

equation
cd) (b a
a b)) \d ¢



so that @ = d and b = c. Then the condition that YZ = ZY gives that

—-a—b —a-b\ (b—a —a
a b )] \Na—=0b —=b )"

Thus b = 0, so Z has the form
a 0
0 a )/’

The two matrices of determinant 1 of this form are +17, so the only one not in G
is —I. ([5 marks]).

2. Lagrange’s Theorem states that if |H| is a subgroup of a finite group G then
|H| divides |G| and |G|/|H]| is equal to the number of distinct cosets of H in G
(]2 marks]). If G has order p, let z be any non-trivial element of G, then |(z)]
has order dividing p. Since this order is not 1 by choice, it must be p, so G = ()
and so G is cyclic (|2 marks]).

Now, we are given that yz = z 'y (the anchor step), so suppose that yz* =
2%y then

yaht! = gk = ghyz = z= Dy,
as required ([2 marks]).

To find the order of each of the 10 elements of G we note that x has order 5,
so each power of x has order 5. Also yz'yz’ = y(yr *)z' = y? = 1, so each other
element of G has order 2. (|4 marks]).

Since G has 10 elements, the possible orders of subgroups of G are 1,2,5 or
10. It follows that a proper subgroup of GG has prime order so is cyclic.

[3 marks]

To determine the subgroups with 2 elements, note that these are of the form
{1,g} where g> = 1, so g is one of the five elements yz’. There is only one
subgroup with 5 elements ({z)), so G has 6 non-trivial proper subgroups ([4
marks]).

If now H and K are distinct proper subgroups of GG, both H and K are cyclic
of prime order and since H # K we have that HN K < H so HN K = {1}.

[3 marks|

3. Given groups G and H, then G x H is the set of ordered pairs (g, h) with
g € G and h € H, with group composition

(917 hl)(g27 h2) = (91927 h1h2)-

[1 mark]
To see that this is a group check axioms:
(G1) is clear since G and H are groups;



(G2) just needs to be checked but follows directly from associativity in G' and
H

(91, hl)((g2,h2)(g3, h3)) = (glahl)(g2g3a h2h3) = (91(9293); hl(h2h3))
= ((9192)93, (hihy)h3)) = ((9192, hihs) (g3, hs) = ((91, h1) (g2, ha))(g3, hi3);

as required.

(G3) the identity is (1, 1y);

(G4) the inverse of (g, h) is (¢g7', A7) ([4 marks]).

Now suppose that G is abelian so that g,g9, = g,9; for all g;, g, € G and also
that H is abelian hyhy = hyh; for all hy,hy € H. then

(glahl)(g2ah2) = (9192; hth) = (g2glah2hl) = (92; hZ)(glahl)

so that G x H is abelian ([2 marks]).
For the converse, suppose that G x H is abelian so that

(91, h1)(92, hz) = (92; hz)(gl, hl)

it then follows from the rule of composition that

(9192; h1h2) = (9291, h2h1)

so that ¢g195 = g291 and hihy = hyhy, so that G and H are abelian. ([2 marks]).
The elements of K are as follows: (1,1);((1 2),z); (1,2%); ((1 2);2%); (1,z*)
and ((1 2),2°). (|2 marks]).
The distinct left cosets of K in G are therefore

K = {(1,1);((12),2);(1,2%); (1 2),2%); (1,27); (1 2),2") };
Lo)E = {(12);((12),2%);(1,2%); (1 2),2%); (1,2°),((1 2), D}
(@3), DK = {((13),1);((123),2)); (1 3),2");((1 2 3),2°); (1 3),2"); (1 2 3),2°)}
(13),2)K = {((13),2);((123),2%); (1 3),2°); (1 2 3),2%); ((1 3),2%); (1 2 3),
((23), DK = {((23),1);((132),2);((23),2"); (1 32),2°);((2 3),2"); (1 3 2),2°
(23),0)K = {((23),2):((132),2%); (2 3),5%); (13 2),2%; (2 3),2); (1 3 2),1
(Write completely for full (6) marks).

This is not the same as the decomposition into right cosets because

K((13),2) = ((13),1);((132),2); ((13),2%); ((132),2%); (1 3),2%); (13 2),2")

and this is not a left coset. ([3 marks|).

4. Let 9 : (G,0) — (H,*) be a group homomorphism. Then for all z,y in G,
Yz oy) =9(z) *x9¥(y) ([1 mark]).



It follows that ¥(15)9(g) = ¥(g) for all g € G, so (1) is the identity element
of H (by uniqueness) as required.
Also 9(g)9(g71) = 9(1g) = 1y, so 9(g~) = I(g)”" ([2 marks]).
We have
kerd = {g € G :¥(g9) =1y}

[1 mark]
and
imd = {h € H : h = 9Y(z) for some z € G}.

[1 mark]

Then K=kerd is a subgroup, because 1¢ € K. If z,y are in K, then ¥(z) =
Iy) = 1g, so Hzy) = J(x)d(y) = 1yly = 1y, so zy € K. Finally since
Ig ) =9(g) ", ¥g ) =1y ' =1y and ¢ ! € K. It only remains to show
that K is a normal subgroup. If g € G and k € K then

Wgkg ') =(g)1ud(9)™ = 1u

so gkg™' € K ([4 marks]).
The homomorphism theorem says

(a) im ¥ is a subgroup of H;
(b) ker ¥ is a normal subgroup of G;

(c) the quotient group G/ker? is isomorphic to im 9 ([3 marks]).

Now the given G is a subgroup because the product of two matrices with
determinant +1, 47 has determinant +1,+7. Similarly the inverse of a matrix
with one of these four determinants has determinant +1 or +i. ([2 marks]).

Consider the map ¢ : G — C* defined by ¢(X) = det X, then the kernel
of this map is a normal subgroup of index 4 (since 4 possible determinants are
allowed. ([4 marks])

Since G/N is isomorphic to the cyclic group generated by i, G/N is cyclic.([2
marks |).

5. To show Gy is a subgroup, note that the identity permutation is in Gx; also
if 7 and p are in Gy, then 7(z) = p(z) = z for all z € X, so

m(p(z)) = n(z) =2

for all z € X, so that mp is in Gx. Also, if 7 is in G, then 7(z) = z for all
r € X. Soxz=n"1(z) for all z € X thus G is a subgroup as required.
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([3 marks])
The elements of S(4) in S(3) are {1, (1 2),(1 3),(2 3),(1 2 3) and (1 3 2)}.
([1 mark]).
This is a subgroup with six elements, so its subgroups have order 1, 2, 3 or 6.
Subgroups of order 1 or 6 are clear, so we need to find 4 subgroups of order 2 or
3. Such subgroups are cyclic so we just observe that S(3) has three elements of
order 2 (these being (1 2),(1 3),(2 3)) and two of order three (1 2 3) and (1 3 2).
Since ((1 2 3)) = ((1 3 2)), we obtain the required list ([4 marks]).
As for normal subgroups, {1} and G always are, ((1 2 3)) has index two so is
normal, but none of the others are normal since

(123)(12)(132)=(23);(123)(13)(132)=(12):(123)(23)(132)=(13).

([2 marks))

To decide whether there is a normal subgroup of S(4) contained in S(3),
note that such a subgroup would need to be a normal subgroup of S(3) and so
would be one of the three just considered. The subgroup {1} is excluded, so
we only need consider S(3) itself and A(3), neither of which are normal because
(34)(123)(34)=(124). ([>b marks]).

To decide whether G has a proper normal subgroup containing S(3) we first
observe that such a subgroup would need to have order divisible by 6 and dividing
24, so would have order 12 (the general fact referred to in the question). However,
S(4) has a unique normal subgroup with 12 elements, the alternating group A(4)
consisting of even permutations. Since S(3) contains some odd permutations, it
is clear that S(3) is not contained in A(4) and therefore not in any proper normal
subgroup of S(4).

[5 marks]
6. A set X is a G-set if there is an action o : G x X — X such that:
lgox=xforallz € X
ghox =go(hox)forall gh € G and all x € X.
[2 marks|
The stabilizer G, of x € X is
G,={9€G:gox =x}.
[1 mark]
The orbit O, is
O, ={y:y=goux for some g € G}.
[1 mark]



To show that the stabilizer G, of = is a subgroup note that if g, h are in G,
then gox =2z = hox. Thus

ghozxz=go(hozx)=goz=x

so gh € G, as required. Also 15 € G, so (G, is non-empty. Finally, if g € G,
then goz =z s0 g 'lgox = g ' oxz. It follows that g 'oz = 10z = z, s0
g ! € G, ([3 marks]).

The orbit-stabilizer theorem says

G is a subgroup of G.
If G is finite, then |0, = |G : G,

[2 marks]
An example of a polynomial which has only itself in its orbit is z1 +z9+z3+x4
([2 marks)).
The polynomial z;z, is stabilized by (1 2), by (3 4), so its stabilizer has at
least four elements giving at most 6 elements in its orbit. However, the following
are in the orbit, so must be the complete orbit:

T1X9,X1T3,T 1Ty, LT3, ToTy, T3Ty

([4 marks]).

Now consider z;x9 + x324. It is clear that the four permutations we found

in the first part {1, (1 2)(3 4), (1 3)(24), (1 4)(2 3)} all stabilize our polynomial.

However, when we apply the 4-cycle (1 3 2 4) to our polynomial we see that it is

also fixed by this permutation so the stabilzer has eight elements. We try to list
three polynomials in its orbit, and easily obtain

T1T9 + T3Ty, T3 + T1Xy4, 3T + Loy

thus completing the determination ([5 marks]).

7. Let p be a prime and G be a finite group of order p*n where p does not divide
n. Then:

(1) G has Sylow p-subgroups (subgroups of order p*);

(2) the number of these is congruent to 1 mod p;

(3) if P is a Sylow p-subgroup and @) is any p-subgroup, there is an element
g of G such that ¢Qg¢~! C P;

(4) any two Sylow p-subgroups are conjugate, the number of these divides |G|.

[4 marks]

Suppose that G is a group of order 35=>5 x 7 the number of Sylow 5-subgroups
is 1,6,11,16,21, ... and divides 35, so is 1. The number of Sylow 7 subgroups is
1,8,15,22,... and divides 35 so is also 1. Thus G has a unique Sylow 5-subgroup,

6



P, say, and a unique Sylow 7-subgroup (), say. These are each normal with P
containing all 4 non-identity elements of G of order 5 and () containing all 6
non-identity elements of G of order 7. It follows by Lagrange that there must
be elements of G of order 35 (the only other divisor of 35), so G is cyclic. ([5
marks]).

Now suppose that G is a group with 105=3 x 5 x 7. The number of Sylow
3-subgroups is either 1 or 7. The number of Sylow 5-subgroups is either 1 or 21
and the number of Sylow 7-subgroups is 1 or 15. Suppose GG has more than 1
(and so 15) sylow 7-subgroups. These 15 distinct subgroups would all intersect
in the identity element, giving in total 90 elements of order 7, and only leaving 15
elements of GG to be distributed over the Sylow 3 and 5 subgroups. It would follow
that there could only be one of each. Now consider two cases (a) G has a normal
Sylow 7-subgroup P. Then G/P would have order 15 and so would be cyclic. By
the correspondence theorem, the lift of a Sylow 5-subgroup of this quotient back
to G would give a normal subgroup of order 35. In case (b), we have seen that
G has a normal Sylow 5-subgroup @, so that G/Q has order 21. Since a group
of order 21 has a normal Sylow 7-subgroup, we can apply the correspondence
theorem again to still obtain a normal subgroup of order 35. ([7 marks])

Finally, suppose G has 56 = 23 x 7 elements, but does not have a unique Sylow
7 subgroup, so that the number of Sylow 7-subgroups is 8. These eight subgroups
intersect pairwise in {1}, giving 48 elements of order 7 and only leaving room for
one (and therefore normal) Sylow 2-subgroup. ([4 marks]).

8. The Jordan-Holder Theorem says that any two composition series of a group
are isomorphic ([1 mark]). A composition series is a finite series of subgroups,
each normal in the next

G=Gy>G -G ={1)

which can not be refined without repeating terms ([1 mark]). Two composition
series are isomorphic if there is a bijection between the quotient groups in the
respective series so that corresponding quotient groups are isomorphic ([1 mark]).

(a) Let G be a cyclic group of order 4 generated by z (so 2* = 1). Then (z?)
is a subgroup of G which is normal since G is abelian. It follows (since 2 is prime)
that a composition series for G is

G > (%) > {1}.

[3 marks]

(b) Now let G be a non-cyclic of order 4 and let y be a non-identity element

of G (so that y*> = 1). Apply the same argument as in (1) with (y) replacing (z?),
to obtain the composition series

G > (y) > {1},

7



({y) is normal since it has index 2).
[3 marks]
(c) Next, let G be cyclic of order 6 (so it is generated by x with 2® = 1).
Consider the subgroup (z?) of order 3. It is normal because G is abelian. The
series

G = (z%) > {1}

cannot be refined beause 2 and 3 are primes, so is a composition series.
[3 marks|
(d) Now let G be the alternating group A(4). The four elements

L (12)(34); (1 3)(24); (1 4)(2 3)

form a subgroup V' which is normal since the three non-idenitity elements form
a conjugacy class. So we have a series for G

G>V>{1}

since G/V has order 3 this bit cannot be refined, so we are left with the problem of
whether V' has a better composition series. This is solved in (b), so a composition
series is

G>2V=>{1,(12)B4)}=>{1}

[5 marks])

(e) We finally turn to the dihedral group D(4). The subgroup (z) is cyclic of

order 4 and is normal because it is of index 2. Also (z?) is a subgroup of this and
is normal because (z) is abelian, so a composition series is

G2 (z) > (z%) > {1}.

[3 marks|



