MATH343 January 2007

Solutions

1. A group is a set G together with an operation \circ satisfying the following axioms:
(G1) for any x, y in $G, x \circ y$ is in G,
(G2) for any x, y, z in $G,(x \circ y) \circ z=x \circ(y \circ z)$,
(G3) there is an element e in G such that for any element g in $G, e \circ g=g \circ e=g$,
(G4) for any element g in G there is an element g^{*} in G with $g \circ g^{*}=g^{*} \circ g=e$.
[4 marks]

Writing the given permutation in cycle notation, it is clear that $\pi=(1324)$ and so $\pi^{-1}=(1423)$. The condition $\pi \rho=\rho \pi^{-1}$ can now be checked for each element of $\{1,2,3,4\}$, so given that $\rho(1)=1$:

$$
\rho(4)=\rho\left(\pi^{-1}(1)\right)=\pi(\rho(1))=\pi(1)=3 .
$$

Similarly,

$$
\rho(2)=\rho\left(\pi^{-1}(4)\right)=\pi(\rho(4))=\pi(3)=2
$$

and

$$
\rho(3)=\rho\left(\pi^{-1}(2)\right)=\pi(\rho(2))=\pi(2)=4 .
$$

It follows that

$$
\rho=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 3
\end{array}\right)=(34) .
$$

[5 marks]
Now let $G=\langle\pi, \rho\rangle$. Then the four powers of π are clearly in G together with their products with ρ. Thus G has at least 8 elements: identity $e, \pi=(1324)$, $\pi^{2}=(12)(34), \pi^{3}=(1423), \rho=(34), \rho \pi=(14)(23), \rho \pi^{2}=(12)$ and $\rho \pi^{3}=$ (13)(24).
[3 marks]
In order to show that G consists of precisely these 8 elements, we must show that these elements do indeed form a group, since we have already seen that the group generated by the permutations π and ρ contains at least these 8 permutations. To establish this, we need to do something equivalent to calculating the multiplication table for the elements. To calculate the multiplication table we can use the equations $\pi^{4}=e, \rho^{2}=e$ and $\pi \rho=\rho \pi^{-1}=\rho \pi^{3}$. The table is

	e	π	π^{2}	π^{3}	ρ	$\rho \pi$	$\rho \pi^{2}$	$\rho \pi^{3}$
e	e	π	π^{2}	π^{3}	ρ	$\rho \pi$	$\rho \pi^{2}$	$\rho \pi^{3}$
π	π	π^{2}	π^{3}	e	$\rho \pi^{3}$	ρ	$\rho \pi$	$\rho \pi^{2}$
π^{2}	π^{2}	π^{3}	e	π	$\rho \pi^{2}$	$\rho \pi^{3}$	ρ	$\rho \pi$
π^{3}	π^{3}	e	π	π^{2}	$\rho \pi$	$\rho \pi^{2}$	$\rho \pi^{3}$	ρ
ρ	ρ	$\rho \pi$	$\rho \pi^{2}$	$\rho \pi^{3}$	e	π	π^{2}	π^{3}
$\rho \pi$	$\rho \pi$	$\rho \pi^{2}$	$\rho \pi^{3}$	ρ	π^{3}	e	π	π^{2}
$\rho \pi^{2}$	$\rho \pi^{2}$	$\rho \pi^{3}$	ρ	$\rho \pi$	π^{2}	π^{3}	e	π
$\rho \pi^{3}$	$\rho \pi^{3}$	ρ	$\rho \pi$	$\rho \pi^{2}$	π	π^{2}	π^{3}	e

The table shows closure, identity and inverses. Since permutations are maps and are therefore associative under composition, we have shown that the 8 elements form a group and so this is the group generated by π and ρ. [Of course any alternative way to enumerate the group elements or express the table will attract full marks.]
[6 marks]
Finally, we need to find a non-identity element of G for which the corresponding row of the table is equal to the corresponding column of the table. A visual inspection shows that we can take z to be π^{2}.
2. First, we show that the equation does have a solution by setting $x=u^{-1} v$ so that

$$
u x=u\left(u^{-1} v\right)=\left(u u^{-1}\right) v=e v=v
$$

using (G2), (G4) and (G3) respectively. Now the solution is unique because if x_{1} and x_{2} would be two solutions of the equation, then $u x_{1}=u x_{2}=v$. Multiplying the equation $u x_{1}=u x_{2}$ by u^{-1} on the left gives $u^{-1}\left(u x_{1}\right)=u^{-1}\left(u x_{2}\right)$. Now using (G2), $\left(u^{-1} u\right) x_{1}=\left(u^{-1} u\right) x_{2}$. Then using (G4), ex $x_{1}=e x_{2}$. Finally, using (G3), $x_{1}=x_{2}$.
[4 marks]
Now let G be a cyclic group of order 30 generated by an element g. The elements of G are $e, g, g^{2}, \ldots, g^{29}$. The equation $x^{5}=e$ has 5 solutions in G, they are elements of the form g^{k} with k divisible by $\frac{|G|}{5}=6$, i.e. $e, g^{6}, g^{12}, g^{18}, g^{24}$. The equation $x^{15}=e$ has 15 solutions in G, they are elements of the form g^{k} with k divisible by $\frac{|G|}{15}=2$, i.e. g^{k} with even k. The equation $x^{6}=e$ has 6 solutions in G, they are elements of the form g^{k} with k divisible by $\frac{|G|}{6}=5$, i.e. $e, g^{5}, g^{10}, g^{15}, g^{20}, g^{25}$. The equations $x^{15}=e$ and $x^{6}=e$ have three common solutions, they are elements of the form g^{k} with k divisible by $2 \times 5=10$, i.e. e, g^{10}, g^{20}.
[4 marks]
Now let G be the dihedral group $D(10)$. We use the notation explained before question 1. The solution to $b a^{8} x=a^{2}$ is $x=\left(b a^{8}\right)^{-1} a^{2}=a^{-8} b^{-1} a^{2}$. The elements a and b are of orders 10 and 2 respectively, hence $a^{-8}=a^{2}$ and $b^{-1}=b$, so $x=a^{2} b a^{2}$. Using $a b=b a^{-1}$ we obtain

$$
x=a^{2} b a^{2}=a(a b) a^{2}=a\left(b a^{-1}\right) a^{2}=a b a=(a b) a=\left(b a^{-1}\right) a=b .
$$

[3 marks]
Next consider the equation $a x=x a^{-1}$. Using $a b=b a^{-1}$ we see that the element b is a solution of this equation. There are no solutions of this equation among the powers of a because they commute with a : For $x=a^{k}$, $a x=a^{k+1}, x a^{-1}=a^{k-1}$. So we consider $x=b a$, then $a x=a(b a)=(a b) a=\left(b a^{-1}\right) a=b$ and $x a^{-1}=$ $b a a^{-1}=b$, so $b a$ is another solution. [In fact the elements $b a^{k}$ for $k=2, \ldots, 9$ are the others.]
[3 marks]
Finally the equation $u x^{5}=v$ is equivalent to the equation $x^{5}=u^{-1} v$. To solve $x^{5}=u^{-1} v$, work out g^{5} for all g in $G:\left(a^{k}\right)^{5}=a^{5}$ for odd $k,\left(a^{k}\right)^{5}=e$ for even $k,\left(b a^{k}\right)^{5}=b a^{k}$ for all integer k. We see that the element e has 5 fifth roots $e, a^{2}, a^{4}, a^{6}, a^{8}$ in G, the element a^{5} has 5 fifth roots $a, a^{3}, a^{5}, a^{7}, a^{9}$ in G, the element $b a^{k}$ with integer k has a unique fifth root $b a^{k}$ in G, while the elements a^{k} for $k=1,2,3,4,6,7,8,9$ do not have fifth roots in G at all. So the given equation has no solutions in G if $v=u a^{k}$ with $k=1,2,3,4,6,7,8,9$, has five solutions in G if $v=u$ or $v=u a^{5}$, and has a unique solution otherwise. [It is sufficient to provide one example of u and v such that the solution of the equation $u x^{5}=v$ is not unique to get the full marks.]
[6 marks]
3. A subgroup of a group G is a non-empty subset H of G which is itself a group under the same operation as that of G. [Alternatively if H is a subset such that $e_{G} \in H$ and H is closed under products and inverses.] [2 marks] Lagrange's theorem states that if H is a subgroup of a finite group G then $|H|$ divides $|G|$ and the number $|G: H|$ of distinct cosets of H in G is equal $|G| /|H|$.
[2 marks]
A subgroup H of a group G is said to be cyclic generated by g if g is an element of H and every element of H is a power of g.
[1 marks]
Let G be a group with p elements. Let x be any non-identity element of G. Using Lagrange's theorem, the order of the cyclic subgroup $\langle x\rangle$ of G is a divisor of $|G|=p$. This implies $|\langle x\rangle|=1$ or $|\langle x\rangle|=p$, since the number p is prime. But $|\langle x\rangle| \neq 1$ by choice of x, hence $|\langle x\rangle|=p=|G|$, so $G=\langle x\rangle$ and so G is cyclic.
[4 marks]
Let H be a subgroup of G with p elements and K be a subgroup of G with q elements, where p and q are distinct prime numbers. Since $H \cap K$ is a subgroup of H and H has p elements, the number of elements in $H \cap K$ divides p. Since $H \cap K$ is a subgroup of K and K has q elements, the number of elements in $H \cap K$ divides q. Since p and q are distinct prime numbers, the only possibility is for $H \cap K$ to contain just one element, so $H \cap K=\{e\}$.
[2 marks]
The alternating group $A(4)$ contains, by definition, only even permutations on 4 symbols. There are 12 such permutations: the identity, which is of order 1, eight 3 -cycles (123), (132), (124), (142), (134), (143), (234), (243), which are of order 3 , and three products of a pair of disjoint 2 -cycles $(12)(34),(13)(24)$, (14)(23), all of order 2.
[4 marks]
Our calculations show that each non-identity element of $A(4)$ has order 2 or 3. Thus if H is a cyclic subgroup of $A(4)$ generated by an element g, say, then g has order 1,2 , or 3 , so H consists of 1,2 , or 3 elements. Thus every cyclic subgroup of $A(4)$ has order 1 or a prime order.
[2 marks]
Let H and K be cyclic subgroups of $A(4)$. Let $p=|H|$ and $q=|K|$. We know that $p, q \in\{1,2,3\}$. Since $H \cap K$ is a subgroup of both H and K, the order $|H \cap K|$ is by Lagrange's theorem a common divisor of p and q. The integers p and q are 1 or prime. If $p \neq q$, then the only (positive) common divisor of p and q is 1 , so $H \cap K=\{e\}$. If $p=q$, then there are two common divisors of p and q, they are 1 and p. Thus $|H \cap K|$ is either 1 , in which case $H \cap K=\{e\}$, or p, in which case $H \cap K=H=K$.
[1 marks]
Let H be a subgroup of $S(4)$ with $A(4) \subset H$. Using Lagrange's theorem, the order of the subgroup H divides $|S(4)|=24$. On the other hand, $|H| \geq|A(4)|=12$ since $A(4) \subset H$. There are only two divisors of 24 larger than 12 , they are 12
and 24 and correspond to $H=A(4)$ and $H=S(4)$.
4. Suppose first that $a H=b H$. Then, since $e \in H, a=a e \in a H=b H$. Since $a \in b H$, there is an element $h \in H$ such that $a=b h$. Then $a^{-1} b=$ $h^{-1} \in H$. Conversely, if $a^{-1} b$ is in H and $a h_{1}$ with $h_{1} \in H$ is in $a H$, then $a h_{1}=b\left(b^{-1} a h_{1}\right)=b\left(\left(a^{-1} b\right)^{-1} h_{1}\right)=b h_{2}$ with $h_{2}=\left(a^{-1} b\right)^{-1} h_{1} \in H$, so each element $a h_{1}$ of $a H$ is in $b H$, so $a H \subset b H$. On the other hand, if $b h_{1}$ with $h_{1} \in H$ is in $b H$, then $b h_{1}=a\left(a^{-1} b h_{1}\right)=a\left(\left(a^{-1} b\right) h_{1}\right)=a h_{2}$ with $h_{2}=\left(a^{-1} b\right) h_{1} \in H$, so each element $b h_{1}$ of $b H$ is in $a H$, so $b H \subset a H$. We deduce that $a H=b H$.
[5 marks]
A subgroup N is a normal subgroup of G if $g N=N g$ for all g in G. [Any other correct definition of a normal subgroup will attract full marks, for example: A subgroup N is a normal subgroup of G if $g n g^{-1}$ is an element of N for any n in N and g in G.]
[1 marks]
Now let G be the dihedral group $D(10)$. The set $H=\left\{e, a^{2}, a^{4}, a^{6}, a^{8}\right\}$ is a subgroup of G because it is the subgroup generated by a^{2}. [Alternatively, one could construct the multiplication table for H.]
[1 marks] The distinct left cosets of H in G are:

$$
\begin{gathered}
H=e H=\left\{e, a^{2}, a^{4}, a^{6}, a^{8}\right\}, \quad a H=\left\{a, a^{3}, a^{5}, a^{7}, a^{9}\right\}, \\
b H=\left\{b, b a^{2}, b a^{4}, b a^{6}, b a^{8}\right\}, \quad b a H=\left\{b a, b a^{3}, b a^{5}, b a^{7}, b a^{9}\right\} .
\end{gathered}
$$

[4 marks]
The right cosets of H in G are:

$$
H e=H=e H, \quad H a=a H, \quad H b, \quad H b a .
$$

Since $a b=b a^{9}$, an easy check shows that

$$
H b=b H \quad \text { and } \quad H b a=b a H
$$

[2 marks]
Every left coset of H in G is a right coset of H in G, so H is a normal subgroup of G.
[1 marks]
The elements of G / H are the four cosets $\{H, a H, b H, a b H\}$. Now

$$
\begin{aligned}
& H^{2}=H H=H, \quad(a H)^{2}=a H a H=a^{2} H=H \\
&(b H)^{2}=b H b H=b^{2} H=H, \quad(b a H)^{2}=b a H b a H=(b a)^{2} H=e H=H
\end{aligned}
$$

Since every non-identity element of G / H has order 2, the group G / H is not cyclic.
Finally, as all non-identity elements of the group G / H are of order 2, we have $(g H)^{2}=H$ for any element g of G, hence $g^{2} H=(g H)^{2}=H$, so g^{2} is an element of H.
[3 marks]
5. Let f be a map between the groups (G, \circ) and $(H, *)$. Then f is a homomorphism if for all a, b in $G, f(a \circ b)=f(a) * f(b)$.
The kernel of f is $\operatorname{ker}(f)=\left\{g \in G \mid f(g)=e_{H}\right\}$ and the image of f is

$$
\operatorname{im}(f)=\{h \in H \mid h=f(g) \text { for some } g \in G\} .
$$

The homomorphism theorem states that if f is a homomorphism from G to H then

- $\operatorname{im} f$ is a subgroup of H,
- $\operatorname{ker} f$ is a normal subgroup of G,
- $G / \operatorname{ker} f \cong \operatorname{im} f$.

Let G be the set of invertible 2×2 matrices of the form

$$
A=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)
$$

where a and b are real numbers. Before checking for the homomorphism property, it might be convenient to obtain the formula for the product of two elements in G :

$$
\begin{gathered}
\text { For } A=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
r & s \\
s & r
\end{array}\right): \\
A B=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)\left(\begin{array}{ll}
r & s \\
s & r
\end{array}\right)=\left(\begin{array}{cc}
a r+b s & a s+b r \\
a s+b r & a r+b s
\end{array}\right) .
\end{gathered}
$$

(1) Let H be the group of all real numbers under addition and f be given by $f(A)=a$. To check if f is a homomorphism, we need to see if $f(A B)=$ $f(A)+f(B)$ since the operation in H is addition. From our formula for $A B$, we see that $f(A B)=a r+b s$. However $f(A)=a$ and $f(B)=r$, so $f(A)+f(B)=a+r$, i.e. $f(A B) \neq f(A)+f(B)$ in general (for example if $a=r=2$ and $b=s=1$). Thus f is not a homomorphism. [4 marks]
(2) Let H be the group of non-zero real numbers under multiplication and h be given by $h(A)=a^{2}-b^{2}$. To check if h is a homomorphism, we need to see if $h(A B)=h(A) h(B)$ since the operation in H is multiplication. From our formula for $A B$, we see that

$$
h(A B)=(a r+b s)^{2}-(a s+b r)^{2}=\left(a^{2} r^{2}+b^{2} s^{2}+2 a b r s\right)-\left(a^{2} s^{2}+b^{2} r^{2}+2 a b r s\right)
$$

hence

$$
h(A B)=a^{2} r^{2}+b^{2} s^{2}-a^{2} s^{2}-b^{2} r^{2} .
$$

On the other hand, $h(A)=a^{2}-b^{2}$ and $h(B)=r^{2}-s^{2}$, so

$$
h(A) h(B)=\left(a^{2}-b^{2}\right)\left(r^{2}-s^{2}\right)=a^{2} r^{2}-a^{2} s^{2}-b^{2} r^{2}+b^{2} s^{2}=h(A) h(B) .
$$

[Alternatively, notice that $h(A)=\operatorname{det}(A)$ and use $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.] Thus h is a homomorphism.
The kernel $\operatorname{ker}(h)$ of h is

$$
\left\{\left.\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right) \in G \right\rvert\, a^{2}-b^{2}=1\right\} .
$$

The image $\operatorname{im}(h)$ is the whole of H.
It follows by the homomorphism theorem that G has a normal subgroup $N=$ $\operatorname{ker}(h)$ with G / N isomorphic to $\operatorname{ker}(h)=H$. The group G / N is abelian since the group H is abelian.
6. If a permutation is an n-cycle, then π is even when n is an odd integer and π is odd when n is an even integer. For a general permutation, we use the fact that the sign of a product of permutations is multiplicative.
[2 marks]
When π is written as a product of disjoint cycles, the order of π is the least common multiple of the lengths of disjoint cycles of π.
[1 marks]
In disjoint cycle notation, the given permutations are written as

$$
\pi=(12)(34)(56)(78)(910) \quad \text { and } \quad \rho=(110)(24689753) .
$$

The permutation π is a product of five odd cycles, hence $\operatorname{sign}(\pi)=(-1)^{5}=-1$, so π is odd, and π has order 2 . The permutation ρ is a product of two odd cycles, hence $\operatorname{sign}(\rho)=(-1)^{2}=1$, so ρ is even, and ρ has order 8 . [4 marks] The identity permutation is even (as a product of disjoint 1-cycles). If permutations π and ρ are even, then their product $\pi \rho$ is even. If a permutation π is even, then π^{-1} is also even, since π^{-1} has the same set of lengths of disjoint cycles. Thus the alternating group $A(n)$ is a subgroup of $S(n)$. It is a subgroup of index 2 , hence normal.
[4 marks]
The identity permutation is not odd. The set of odd permutations is also not closed because the product of two odd permutations is even.
[1 marks]
Now suppose that a permutation π has odd order k. If π were odd, $\operatorname{sign}\left(\pi^{k}\right)=$ $(\operatorname{sign}(\pi))^{k}=(-1)^{k}$ would be -1 . But $\pi^{k}=e$, hence $\operatorname{sign}\left(\pi^{k}\right)=\operatorname{sign}(e)=1$, so this contradiction shows that π is even.
[4 marks]
An example of an even permutation of order 2 is (12)(34). An example of an even permutation of order 3 is (123).
[2 marks] If π is any element of $S(n)$, then $\operatorname{sign}\left(\pi^{2}\right)=(\operatorname{sign}(\pi))^{2}=1$, so π^{2} is even.
[2 marks]
7. Let p be a prime and G be a finite group of order $p^{k} n$, where p does not divide n. Then
(a) G has Sylow p-subgroups (subgroups of order p^{k}),
(b) the number of these is congruent to $1 \bmod p$.
(c) if P is a Sylow p-subgroup and Q is any p-subgroup, there is an element g of G such that $g Q g^{-1} \subset P$,
(d) any two Sylow p-subgroups are conjugate, the number of these divides $|G|$.
[4 marks]
If there is precisely one Sylow p-subgroup P, then every conjugate of P must be equal to P, so P is a normal subgroup. If P is normal, then every conjugate of P is equal to P, so each Sylow p-subgroup must be equal to P.
[2 marks]
(1) Suppose that G is a group with $35=5 \times 7$ elements. The number of Sylow 5 -subgroups is $1 \bmod 5$ and divides 35 , so is one. The number of Sylow 7 -subgroups is $1 \bmod 7$ and divides 35 , so is also one. Thus G has a unique Sylow 5-subgroup, say P, and a unique Sylow 7 -subgroup, say Q, and the subgroups P and Q are both normal in G. The subgroup P contains all 4 non-identity elements of G of order 5 . The subgroup Q contains all 6 nonidentity elements of G of order 7 . The only other divisor of 35 is 35 . It follows by Lagrange that there must be an element of G of order 35 , so G is cyclic.
[4 marks]
(2) The group G has $56=2^{3} \times 7$ elements, so has Sylow 2 -subgroups (of order 8) and Sylow 7 -subgroups (of order 7). The number of Sylow 2-subgroups is odd and divides 56 , so is either 1 or 7 . The number of Sylow 7 -subgroups is 1 $\bmod 7$ and divides 56 , so is either 1 or 8 . Let us assume that there are 8 (notnormal) Sylow 7 -subgroups. If P and Q are distinct Sylow 7 -subgroups, the number of elements in their intersection is smaller than 7, but this number divides $|P|=|Q|=7$ by Lagrange's theorem, hence $P \cap Q=\{e\}$ for any two distinct Sylow 7 -subgroups of G. Thus the total number of non-identity elements in the union of those 8 Sylow 7 -subgroups is $8 \times 6=48$. Hence there are no more than $56-48-1=7$ non-identity elements in the union of all Sylow 2-subgroups of G. Since any Sylow 2-subgroup of G has 8 elements (and 7 non-identity elements), it follows that there can be only one Sylow 2 -subgroup. We deduce that G has either a normal Sylow 7 -subgroup or a normal Sylow 2-subgroup.
[5 marks]
(3) Finally suppose that G is the symmetric group $S(4)$ of permutations on 4 symbols. The group G has $24=2^{3} \times 3$ elements, so has Sylow 2 -subgroups
(of order 8) and Sylow 3-subgroups (of order 3). The number of Sylow 3subgroups is $1 \bmod 3$ and divides 24 , so is either 1 or 4 . There are 8 elements of order 3 in G (cycles of length 3), and since a Sylow 3 -subgroup of G has 3 elements, these 8 elements of order 3 must be distributed over 4 subgroups. The number of Sylow 2-subgroups is odd and divides 24 , so is either 1 or 3 . Any element of order 2 generates a cyclic subgroup of order 2 . Any subgroup of order 2 is contained in a Sylow 2-subgroup. Thus any element of order 2 is contained in a Sylow 2-subgroup. There are 9 elements of order 2 in G (6 transpositions and 3 products of two disjoint transpositions), and since a Sylow 2-subgroup of G has 8 elements, these 9 elements of order 2 must be distributed over 3 subgroups. Thus the group $G=S(4)$ has 4 Sylow 3 -subgroups and 3 Sylow 2 -subgroups.
[5 marks]
8. The Jordan Hölder Theorem says that any two composition series of a group are isomorphic. [1 marks]
A composition series is a finite series of subgroups, each normal in the next

$$
G=G_{0}>G_{1}>\cdots>G_{k}=\{e\}
$$

which can not be refined without repeating terms.
[1 marks]
Two composition series are isomorphic if there is a bijection between the quotient groups in the respective series so that corresponding quotient groups are isomorphic.
[1 marks]
If H / K has prime number of elements p, a normal subgroup L of H with $K<$ $L<H$ would give rise to a normal subgroup of H / K. Since H / K has prime number of elements, L is either H or K.
[3 marks]
(1) Let G be a cyclic group with 4 elements generated by an element x (of order 4). Then $\left\langle x^{2}\right\rangle$ is a subgroup of G. The subgroup $\left\langle x^{2}\right\rangle$ is normal since G is abelian. It follows (since 2 is prime) that a composition series for G is

$$
G>\left\langle x^{2}\right\rangle>\{e\}
$$

[2 marks]
(2) Now let G be a non-cyclic group with 4 elements and let y be a non-identity element of G (of order 2). Then $\langle y\rangle$ is a subgroup of G. The subgroup $\langle y\rangle$ is normal since G has index 2. It follows (since 2 is prime) that a composition series for G is

$$
G>\langle y\rangle>\{e\} .
$$

[2 marks]
(3) Next, let G be a group with 21 elements. The number of Sylow 7 -subgroups of G is $1 \bmod 7$ and divides 21 , so is one. Thus this Sylow 7 -subgroup S, say, is a normal subgroup of G. Because 7 is prime, S has no non-trivial proper subgroups. Since S has index 3 in G, no subgroup of G lies between G and S, so the series

$$
G>S>\{e\}
$$

is a composition series.
[4 marks]
(4) Now let G be the symmetric group $S(3)$. The alternating group $A(3)$ of even permutations has 3 elements and so has index 2 in G and is a normal subgroup of G. Because 3 is prime, $A(3)$ has no non-trivial proper subgroups. Since $A(3)$ has index 2 in G, no subgroup of G lies between G and $A(3)$, so the series

$$
S(3)>A(3)>\{e\}
$$

is a composition series.
(5) We finally turn to the dihedral group $D(6)$. We use the notation explained before question 1. The subgroup $\langle a\rangle$ is cyclic of order 6. This subgroup is normal because it is of index 2. Also $\left\langle a^{2}\right\rangle$ is a subgroup of $\langle a\rangle$. The subgroup $\left\langle a^{2}\right\rangle$ is normal in $\langle a\rangle$ because $\langle a\rangle$ is abelian, so

$$
G>\langle a\rangle>\left\langle a^{2}\right\rangle>\{e\}
$$

is a composition series. This series can not be refined because the factors are of prime order.

