1. (i)

$$
\begin{gathered}
(34,21)=(21,13)=(13,8)=(8,5)=(5,3)=(3,2)=(2,1)=1 \\
(89,55)=(55,34)=(34,21)=\cdots=1 \\
13 \times 34-21 \times 21=1
\end{gathered}
$$

Application of Euclid's algorithm.
[7 marks]
(ii) $\left(F_{n}, F_{n-1}\right)=\left(F_{n-1}, F_{n-2}\right)$ because $F_{n-2}=F_{n}-F_{n-1}$ and $(a, b)=$ $(a+k b, b)$ for any a and b. Application of result from lectures.
[3 marks]
So $\left(F_{n}, F_{n-1}\right)=\cdots=\left(F_{1}, F_{0}\right)=(1,1)=1$. (Induction isn't really necessary.) Basic logic.
[3 marks]
(iii) We know that $r_{n} \geq 1$ since it is not zero, and so $r_{n-1} \geq 1$ as well. So $r_{n} \geq F_{0}$ and $r_{n-1} \geq F_{1}$. At each stage, we have $r_{i-1}=q_{i} r_{i}+r_{i+1} \geq r_{i}+r_{i+1}$, because $q_{i} \geq 1$. So by induction $r_{n-i} \geq F_{i}$, and therefore $a=r_{0} \geq F_{n}$. Unseen.
[6 marks]
The final statement is simply the contrapositive of the one just proved. Basic logic.
[1 marks]
2. (i) Fermat's theorem: if p is prime, then $a^{p} \equiv a(\bmod p)$ for any integer a. Bookwork.
[2 marks]
Taking $p=5$, we get $a^{5} \equiv a(\bmod 5)$. If $5 \nmid a$, then cancel a from both sides to get $a^{4} \equiv 1(\bmod 5)$. If $5 \mid a$, then both sides are 0 . Either way, $a^{4} \equiv 0$ or 1 $(\bmod 5)$. Similar to examples in lectures.
[2 marks]
First calculate

$$
2^{2006}=2^{4 \times 501+2} \equiv 1^{501} \times 2^{2}=4 \quad(\bmod 5)
$$

But each of x^{4} and y^{4} is either 0 or 1 modulo 5 , so their sum cannot equal 4 (either by trying all cases, or just by saying it's obvious). Deduce there are no solutions to the equation. Similar to example in lectures.
[4 marks]
(ii)

$$
(x+4)^{4}=x^{4}+4 \times 4 x^{3}+6 \times 16 x^{2}+4 \times 4^{3} x+4^{4} \equiv x^{4} \quad(\bmod 16) .
$$

Similar to example in lectures.
[2 marks]
By previous identity, to find all values of n^{4} modulo 16 we only need to look at $0^{4}, 1^{4}, 2^{4}$ and 3^{4}. These are $0,1,0,1$ respectively. So the possible values are 0 and 1. Similar to example in lectures.
[4 marks]
(iii) We have $n^{4} \equiv 0,1(\bmod 5)$ and $n^{4} \equiv 0,1(\bmod 16)$. Now $(5,16)=1$ so each pair of possibilities gives a unique solution modulo 80 (Chinese Remainder Theorem).

If $n^{4} \equiv 0(\bmod 5)$ and $n^{4} \equiv 0(\bmod 16)$ then $n^{4} \equiv 0(\bmod 80)$.
If $n^{4} \equiv 1(\bmod 5)$ and $n^{4} \equiv 1(\bmod 16)$ then $n^{4} \equiv 1(\bmod 80)$.
If $n^{4} \equiv 0(\bmod 16)$ then it is one of $0,16,32,48,64(\bmod 80)$ and the only one of these which is $1(\bmod 5)$ is 16 .

If $n^{4} \equiv 1(\bmod 16)$ then it is one of $1,17,33,49,65(\bmod 80)$ and the only one of these which is $0(\bmod 5)$ is 65 .

So the answers are 0, 1, 16 and 65, all modulo 80. Similar to example in lectures.
3. (i) Start with $k=n-1$ and compute $b^{k}(\bmod n)$. If it not 1 then fail. While k is even, halve k and compute $b^{k}(\bmod n)$. Fail if we ever find $b^{2 k} \equiv 1$ $(\bmod n)$ but $b^{k} \not \equiv \pm 1(\bmod n)$. Otherwise pass. Bookwork.
[3 marks]
If n is prime, then $b^{n-1} \equiv 1(\bmod n)$ by Fermat and the only square roots of 1 are ± 1, so n passes the test. Bookwork.
[2 marks]
(ii) (a) $2^{10}=1024 \equiv 1(\bmod 341)\left(\right.$ probably using a calculator) and so 2^{340} and 2^{170} are both $1(\bmod 341)$. But $2^{85} \equiv 2^{5}=32$ so we fail the test. Conclude that 341 is a pseudoprime to the base 2 but not a strong pseudoprime, and so not prime.
(b) $3^{5}=243 \equiv 1(\bmod 121)$ and so $3^{120}, 3^{60}, 3^{30}$ and 3^{15} are all $1(\bmod 121)$. Test passed, so 121 is a strong pseudoprime to base 3, but not prime since it is 11^{2}.
(c) $2^{24}=16777216 \equiv 1(\bmod 221)$ and so $2^{220}=2^{9 \times 24+4} \equiv 2^{4}=16$ $(\bmod 221)$. Test failed, so not a pseudoprime to base 2 and certainly not a strong pseudoprime. Similar to examples in lectures.
[9 marks]
(iii) Let $x=b^{r}$. We have $x^{2} \equiv 1(\bmod n)$ but $x \not \equiv \pm 1(\bmod n)$. Now $(x-1, n)$ is certainly a factor of n. If it is equal to n, then $n \mid(x-1)$ so $x \equiv 1$ $(\bmod n)$. If it is equal to 1 , then $n \mid\left(x^{2}-1\right)$ implies $n \mid(x+1)$ so $x \equiv-1$ $(\bmod n)$. Conclude that $(x-1, n)$ must be a proper factor of n. Result from lectures, after putting $x=b^{r}$.
[4 marks]
Taking $n=341$ and $b=2$, we have $32^{2} \equiv 1(\bmod 341)$ and so $(31,341)=31$ and $(33,341)=11$ are proper factors of 341 .
4. (i) In $n!=n \times(n-1) \times \cdots 2 \times 1$ there are $\left[\frac{n}{p}\right]$ factors which are multiples of $p,\left[\frac{n}{p^{2}}\right]$ which are multiples of p^{2}, and so on. As p is prime, no powers of p can come from anywhere else. So the formula holds. Bookwork.
[2 marks]
This gives that the power of 5 dividing 2006 ! is $401+80+16+3=500$. The power of 2 is greater, so the number of zeroes is 500. Similar to examples.
[2 marks]
The formula gives $28!=2^{25} \times 5^{5} \times \cdots, 20!=2^{18} \times 5^{4} \times \cdots$ and $8!=2^{7} \times 5^{1} \times \cdots$. Putting this together gives $\binom{28}{8}=2^{0} \times 5^{0} \times \cdots$ so there are no zeroes. (Could have got this by looking just at 5's or just at 2's.) Similar to examples. [4 marks]
(ii) $\phi(n)$ is the number of integers in $\{1, \ldots, n\}$ which are coprime to n. In $\left\{1, \ldots, p^{r}\right\}$ there are p^{r-1} multiples of p and these are the only numbers not coprime to p^{r}, hence the formula. In general,

$$
\begin{aligned}
\phi(n) & =p_{1}^{n_{1}-1}\left(p_{1}-1\right) \times \cdots \times p_{k}^{n_{k}-1}\left(p_{k}-1\right) \\
& =n\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{k}}\right) .
\end{aligned}
$$

Either is OK, or any variant. Bookwork.
[5 marks]
(iii) We have

$$
\phi(100!)=\prod_{5 \neq p \leq 100} p^{v_{p}-1}(p-1) \times 5^{v_{5}-1} \times 4
$$

where v_{p} is the exponent of the greatest power of p dividing 100!. The 5's in this come from the $5^{v_{5}-1}$, and from the $(p-1)$ s for $p=11,31,41,61,71$. By the previous formula, $v_{5}=24$ so the answer is $24-1+5=28$. Unseen. [7 marks]
5. (i) Each line shows that $r_{j+1} \equiv 10 r_{j}(\bmod m)$, so (by induction?) $r_{j} \equiv$ $10^{j-1}(\bmod m)$. There are only finitely many residues $\bmod m$, so we must have $r_{i}=r_{i+k}$ for some $i \geq 1$ and $k \geq 1$. Let i be the least such, and suppose that $i>1$. Then $10^{i} \equiv 10^{i+k}(\bmod m)$ and since $(10, m)=1$ we may divide by 10 to get $10^{i-1} \equiv 10^{i-1+k}(\bmod m)$, contradicting minimality. So $i=1$. Now let k be the least such that $r_{1+k}=r_{1}=1$; then k is the least such that $10^{k} \equiv 1(\bmod m)$, which by definition is the order of 10 modulo m. Bookwork.
[7 marks]
(ii) Compute that $\operatorname{ord}_{7}(10)=6$ and $\operatorname{ord}_{13}(10)=6$. Using the hint, $10^{8} \equiv$ $-1(\bmod 17)$ so $10^{16} \equiv 1(\bmod 17)$. So $\operatorname{ord}_{17}(10)$ divides 16 but not 8 , so is 16 . Similar to examples.
[7 marks]
(iii) If p is prime, then $\operatorname{ord}_{p}(10)=p-1$ if and only if 10 is a primitive root modulo p, by definition. Almost bookwork.
[6 marks]
6. (i) $d(n)$ is the number of divisors of $n . \sigma(n)$ is the sum of the divisors of n. The divisors of p^{a} are p^{k} for $1 \leq k \leq a$, so their sum is $1+\cdots+p^{a}$. This is equal to $\left(p^{a+1}-1\right) /(p-1)$ as can be checked by multiplying out.
σ is multiplicative means that if $(m, n)=1$ then $\sigma(m n)=\sigma(m) \sigma(n)$. It is true because any divisor d_{i} of $m n$ splits uniquely into the product of a divisor x_{i} of m and a divisor y_{i} of n, and then

$$
\left(\sum_{d \mid m} d\right) \times\left(\sum_{d^{\prime} \mid n} d^{\prime}\right)=\sum_{d d^{\prime} \mid m n} d d^{\prime}
$$

Using these two facts, we get

$$
\sigma\left(p_{1}^{n_{1}} \times \cdots \times p_{k}^{n_{k}}\right)=\frac{p_{1}^{n_{1}+1}-1}{p_{1}-1} \cdots \frac{p_{k}^{n_{k}+1}-1}{p_{k}-1}
$$

Bookwork.

(ii) Table of $\sigma\left(p^{a}\right):$| | 2 | 7 | 13 | 31 | 57 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | 3 | 15 | 40 | | |
| | 4 | 31 | | | |

and then $\sigma(p)=p+1$ for $11 \leq p \leq 59$. We must make up 60 by taking products of numbers from separate columns. So

$$
\begin{gathered}
\sigma(59)=60 \\
\sigma(38)=\sigma(19 \times 2)=20 \times 3=60 \\
\sigma(24)=\sigma\left(3 \times 2^{3}\right)=4 \times 15=60
\end{gathered}
$$

Similar to examples.
(iii) A perfect number is a number n satisfying $\sigma(n)=2 n$ or equivalently $s(n)=n$. Suppose that $n=2^{s}\left(2^{s+1}-1\right)$ with $2^{s+1}-1$ prime. Then

$$
\begin{aligned}
\sigma(n) & =\sigma\left(2^{s}\right) \sigma\left(2^{s+1}-1\right) \\
& =\left(1+2+\cdots+2^{s}\right) 2^{s+1} \\
& =\left(2^{s+1}-1\right) 2^{s+1} \\
& =2 \times 2^{s}\left(2^{s+1}-1\right) \\
& =2 n
\end{aligned}
$$

so n is a perfect number. Bookwork.
7. (i) The convergents of x_{0} are the rational numbers

$$
a_{0}, \quad a_{0}+\frac{1}{a_{1}}, \quad a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}}}, \quad a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}}}}, \quad \ldots .
$$

Alternatively, they may be defined as p_{k} / q_{k} where p_{k} and q_{k} satisfy the relations

$$
\begin{gathered}
p_{0}=a_{0}, q_{0}=1, p_{1}=a_{0} a_{1}+1, q_{1}=a_{1} \\
p_{k+1}=a_{k+1} p_{k}+p_{k-1}, q_{k+1}=a_{k+1} q_{k}+q_{k-1} .
\end{gathered}
$$

Bookwork.

The continued fraction for π is $[3,7,15,1, \ldots]$. The first four convergents of π are $3,22 / 7,333 / 106,355 / 113$. [I have checked that the standard University calculator has enough precision to do this calculation.] With calculator, from definition.
[3 marks]
(ii) If $Q_{k}=1$ then $x_{k}=P_{k}+\sqrt{n}$ so $a_{k}=\left[x_{k}\right]=P_{k}+[\sqrt{n}]=P_{k}+a_{0}$. Then $P_{k+1}=a_{k}-P_{k}=a_{0}=P_{1}$ and $Q_{k+1}=n-P_{k+1}^{2}=n-P_{1}^{2}=\left(n-P_{1}\right)^{2} / Q_{0}=Q_{1}$. So both P_{k} and Q_{k} recur, and hence so do x_{k} and a_{k}. Bookwork. [6 marks]
(iii) Work out the continued fraction for $\sqrt{18}$.

k	P_{k}	Q_{k}	x_{k}	a_{k}	p_{k}	q_{k}
0	0	1	$\sqrt{18}$	4	4	1
1	4	2	$\frac{4+\sqrt{18}}{2}$	4	17	4
2	4	1	$4+\sqrt{18}$	8	140	33
3	4	2	$\frac{4+\sqrt{18}}{2}$	4	577	136
4	4	1	$4+\sqrt{18}$	8	4756	1121
5	4	2	$\frac{4+\sqrt{18}}{2}$	4	19601	4620

Solutions come from odd k for which $Q_{k+1}=1$. So $(x, y)=(17,4),(577,136)$, (19601, 4620). Similar to examples.
8. (i) n is a quadratic residue modulo p if there exists an integer x such that $x^{2} \equiv n(\bmod p)$. Bookwork.
[2 marks]
Since $6^{2} \equiv-1(\bmod 37),-1$ is a quadratic residue modulo 37 . Understanding of definition.
[2 marks]

$$
\left(\frac{-1}{p}\right)=\left\{\begin{array}{lll}
1 & \text { if } p \equiv 1 \quad(\bmod 4) \\
-1 & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Bookwork.
[2 marks]
In the previous part, $37 \equiv 1(\bmod 4)$ and -1 is a quadratic residue modulo 37, in accordance with what we have just proved. Application of result. [1 marks]
(ii) Gauss' law of quadratic reciprocity: if p and q are distinct odd primes, then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=\left\{\begin{array}{lll}
1 & \text { if } p \equiv 1 \quad(\bmod 4) \text { or } q \equiv 1 \quad(\bmod 4) ; \\
-1 & \text { if } p \equiv 3 & (\bmod 4) \text { and } q \equiv 3 \quad(\bmod 4) .
\end{array}\right.
$$

(Any other way of stating it is equally acceptable.) Bookwork.
[3 marks]
So

$$
\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)= \begin{cases}1 & \text { if } p \equiv \pm 1 \quad(\bmod 5) \\ -1 & \text { if } p \equiv \pm 2 \quad(\bmod 5)\end{cases}
$$

Simple application of result.
(iii) Suppose x and y are coprime, and that p is an odd prime, not equal to 5 , such that $p \mid\left(x^{2}-5 y^{2}\right)$. If $p \mid x$ then $p \mid x^{2}$ so $p \mid 5 y^{2}$ and then, since $p \nmid 5$, $p \mid y^{2}$ and hence $p \mid y$. This contradicts $(x, y)=1$ so cannot be true, i.e. $p \nmid x$. Similarly $p \nmid y$.

Since $p \nmid y$, we have $(p, y)=1$ and so y has an inverse modulo p, i.e. there exists an integer s such that $s y \equiv 1(\bmod p)$. So taking $p \mid\left(x^{2}-5 y^{2}\right)$, we get $x^{2} \equiv 5 y^{2}(\bmod p) \Longrightarrow s^{2} x^{2} \equiv 5(\bmod p)$ so 5 is a quadratic residue modulo p. Deduce that $p \equiv \pm 1(\bmod 5)$. Unseen.

