1. (i)

$$(34, 21) = (21, 13) = (13, 8) = (8, 5) = (5, 3) = (3, 2) = (2, 1) = 1.$$

 $(89, 55) = (55, 34) = (34, 21) = \dots = 1.$
 $13 \times 34 - 21 \times 21 = 1.$

Application of Euclid's algorithm.[7 marks](ii) $(F_n, F_{n-1}) = (F_{n-1}, F_{n-2})$ because $F_{n-2} = F_n - F_{n-1}$ and (a, b) = (a + kb, b) for any a and b. Application of result from lectures.[3 marks]So $(F_n, F_{n-1}) = \cdots = (F_1, F_0) = (1, 1) = 1$. (Induction isn't really necessary.)Basic logic.[3 marks]

(iii) We know that $r_n \ge 1$ since it is not zero, and so $r_{n-1} \ge 1$ as well. So $r_n \ge F_0$ and $r_{n-1} \ge F_1$. At each stage, we have $r_{i-1} = q_i r_i + r_{i+1} \ge r_i + r_{i+1}$, because $q_i \ge 1$. So by induction $r_{n-i} \ge F_i$, and therefore $a = r_0 \ge F_n$. Unseen. [6 marks]

The final statement is simply the contrapositive of the one just proved. *Basic logic*. [1 marks]

2. (i) Fermat's theorem: if p is prime, then $a^p \equiv a \pmod{p}$ for any integer a. Bookwork. [2 marks]

Taking p = 5, we get $a^5 \equiv a \pmod{5}$. If $5 \nmid a$, then cancel a from both sides to get $a^4 \equiv 1 \pmod{5}$. If $5 \mid a$, then both sides are 0. Either way, $a^4 \equiv 0$ or 1 (mod 5). Similar to examples in lectures. [2 marks]

First calculate

$$2^{2006} = 2^{4 \times 501 + 2} \equiv 1^{501} \times 2^2 = 4 \pmod{5}.$$

But each of x^4 and y^4 is either 0 or 1 modulo 5, so their sum cannot equal 4 (either by trying all cases, or just by saying it's obvious). Deduce there are no solutions to the equation. Similar to example in lectures. [4 marks]

(ii)

$$(x+4)^4 = x^4 + 4 \times 4x^3 + 6 \times 16x^2 + 4 \times 4^3x + 4^4 \equiv x^4 \pmod{16}.$$

Similar to example in lectures.

By previous identity, to find all values of n^4 modulo 16 we only need to look at 0^4 , 1^4 , 2^4 and 3^4 . These are 0, 1, 0, 1 respectively. So the possible values are 0 and 1. Similar to example in lectures. [4 marks]

(iii) We have $n^4 \equiv 0, 1 \pmod{5}$ and $n^4 \equiv 0, 1 \pmod{16}$. Now (5, 16)=1 so each pair of possibilities gives a unique solution modulo 80 (Chinese Remainder Theorem).

If $n^4 \equiv 0 \pmod{5}$ and $n^4 \equiv 0 \pmod{16}$ then $n^4 \equiv 0 \pmod{80}$.

If $n^4 \equiv 1 \pmod{5}$ and $n^4 \equiv 1 \pmod{16}$ then $n^4 \equiv 1 \pmod{80}$.

If $n^4 \equiv 0 \pmod{16}$ then it is one of $0, 16, 32, 48, 64 \pmod{80}$ and the only one of these which is 1 (mod 5) is 16.

If $n^4 \equiv 1 \pmod{16}$ then it is one of $1, 17, 33, 49, 65 \pmod{80}$ and the only one of these which is $0 \pmod{5}$ is 65.

So the answers are 0, 1, 16 and 65, all modulo 80. Similar to example in lectures. [6 marks]

3. (i) Start with k = n - 1 and compute $b^k \pmod{n}$. If it not 1 then fail. While k is even, halve k and compute $b^k \pmod{n}$. Fail if we ever find $b^{2k} \equiv 1 \pmod{n}$ but $b^k \not\equiv \pm 1 \pmod{n}$. Otherwise pass. *Bookwork*. [3 marks]

If n is prime, then $b^{n-1} \equiv 1 \pmod{n}$ by Fermat and the only square roots of 1 are ± 1 , so n passes the test. *Bookwork.* [2 marks]

(ii) (a) $2^{10} = 1024 \equiv 1 \pmod{341}$ (probably using a calculator) and so 2^{340} and 2^{170} are both 1 (mod 341). But $2^{85} \equiv 2^5 = 32$ so we fail the test. Conclude that 341 is a pseudoprime to the base 2 but not a strong pseudoprime, and so not prime.

(b) $3^5 = 243 \equiv 1 \pmod{121}$ and so 3^{120} , 3^{60} , 3^{30} and 3^{15} are all 1 (mod 121). Test passed, so 121 is a strong pseudoprime to base 3, but not prime since it is 11^2 .

(c) $2^{24} = 16777216 \equiv 1 \pmod{221}$ and so $2^{220} = 2^{9 \times 24+4} \equiv 2^4 = 16 \pmod{221}$. Test failed, so not a pseudoprime to base 2 and certainly not a strong pseudoprime. *Similar to examples in lectures.* [9 marks]

(iii) Let $x = b^r$. We have $x^2 \equiv 1 \pmod{n}$ but $x \not\equiv \pm 1 \pmod{n}$. Now (x-1,n) is certainly a factor of n. If it is equal to n, then $n \mid (x-1)$ so $x \equiv 1 \pmod{n}$. If it is equal to 1, then $n \mid (x^2-1)$ implies $n \mid (x+1)$ so $x \equiv -1 \pmod{n}$. Conclude that (x-1,n) must be a proper factor of n. Result from lectures, after putting $x = b^r$. [4 marks]

Taking n = 341 and b = 2, we have $32^2 \equiv 1 \pmod{341}$ and so (31, 341) = 31 and (33, 341) = 11 are proper factors of 341. [2 marks]

4. (i) In $n! = n \times (n-1) \times \cdots \times 2 \times 1$ there are $\left[\frac{n}{p}\right]$ factors which are multiples of p, $\left[\frac{n}{p^2}\right]$ which are multiples of p^2 , and so on. As p is prime, no powers of p can come from anywhere else. So the formula holds. *Bookwork*. [2 marks]

This gives that the power of 5 dividing 2006! is 401 + 80 + 16 + 3 = 500. The power of 2 is greater, so the number of zeroes is 500. *Similar to examples*.

[2 marks]

The formula gives $28! = 2^{25} \times 5^5 \times \cdots$, $20! = 2^{18} \times 5^4 \times \cdots$ and $8! = 2^7 \times 5^1 \times \cdots$. Putting this together gives $\binom{28}{8} = 2^0 \times 5^0 \times \cdots$ so there are no zeroes. (Could have got this by looking just at 5's or just at 2's.) *Similar to examples.* [4 marks]

(ii) $\phi(n)$ is the number of integers in $\{1, \ldots, n\}$ which are coprime to n. In $\{1, \ldots, p^r\}$ there are p^{r-1} multiples of p and these are the only numbers not coprime to p^r , hence the formula. In general,

$$\phi(n) = p_1^{n_1 - 1}(p_1 - 1) \times \dots \times p_k^{n_k - 1}(p_k - 1)$$

= $n(1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_k}).$

Either is OK, or any variant. Bookwork.

(iii) We have

$$\phi(100!) = \prod_{5 \neq p \le 100} p^{v_p - 1}(p - 1) \times 5^{v_5 - 1} \times 4$$

where v_p is the exponent of the greatest power of p dividing 100!. The 5's in this come from the 5^{v_5-1} , and from the (p-1)s for p = 11, 31, 41, 61, 71. By the previous formula, $v_5 = 24$ so the answer is 24 - 1 + 5 = 28. Unseen. [7 marks]

5. (i) Each line shows that $r_{j+1} \equiv 10r_j \pmod{m}$, so (by induction?) $r_j \equiv 10^{j-1} \pmod{m}$. There are only finitely many residues mod m, so we must have $r_i = r_{i+k}$ for some $i \geq 1$ and $k \geq 1$. Let i be the least such, and suppose that i > 1. Then $10^i \equiv 10^{i+k} \pmod{m}$ and since (10, m) = 1 we may divide by 10 to get $10^{i-1} \equiv 10^{i-1+k} \pmod{m}$, contradicting minimality. So i = 1. Now let k be the least such that $r_{1+k} = r_1 = 1$; then k is the least such that $10^k \equiv 1 \pmod{m}$, which by definition is the order of 10 modulo m. Bookwork. [7 marks]

(ii) Compute that $\operatorname{ord}_7(10) = 6$ and $\operatorname{ord}_{13}(10) = 6$. Using the hint, $10^8 \equiv -1 \pmod{17}$ so $10^{16} \equiv 1 \pmod{17}$. So $\operatorname{ord}_{17}(10)$ divides 16 but not 8, so is 16. Similar to examples. [7 marks]

(iii) If p is prime, then $\operatorname{ord}_p(10) = p - 1$ if and only if 10 is a primitive root modulo p, by definition. Almost bookwork. [6 marks]

[5 marks]

6. (i) d(n) is the number of divisors of n. $\sigma(n)$ is the sum of the divisors of n. The divisors of p^a are p^k for $1 \le k \le a$, so their sum is $1 + \cdots + p^a$. This is equal to $(p^{a+1}-1)/(p-1)$ as can be checked by multiplying out.

 σ is multiplicative means that if (m, n) = 1 then $\sigma(mn) = \sigma(m)\sigma(n)$. It is true because any divisor d_i of mn splits uniquely into the product of a divisor x_i of m and a divisor y_i of n, and then

$$\left(\sum_{d|m} d\right) \times \left(\sum_{d'|n} d'\right) = \sum_{dd'|mn} dd'.$$

Using these two facts, we get

$$\sigma(p_1^{n_1} \times \dots \times p_k^{n_k}) = \frac{p_1^{n_1+1} - 1}{p_1 - 1} \cdots \frac{p_k^{n_k+1} - 1}{p_k - 1}.$$

Bookwork.

and then $\sigma(p) = p + 1$ for $11 \le p \le 59$. We must make up 60 by taking products of numbers from separate columns. So

$$\sigma(59) = 60$$

$$\sigma(38) = \sigma(19 \times 2) = 20 \times 3 = 60$$

$$\sigma(24) = \sigma(3 \times 2^3) = 4 \times 15 = 60.$$

Similar to examples.

[5 marks]

(iii) A perfect number is a number n satisfying $\sigma(n) = 2n$ or equivalently s(n) = n. Suppose that $n = 2^s(2^{s+1} - 1)$ with $2^{s+1} - 1$ prime. Then

$$\sigma(n) = \sigma(2^{s})\sigma(2^{s+1} - 1)$$

= $(1 + 2 + \dots + 2^{s})2^{s+1}$
= $(2^{s+1} - 1)2^{s+1}$
= $2 \times 2^{s}(2^{s+1} - 1)$
= $2n$

so n is a perfect number. *Bookwork*.

Putting s = 1, 2, 4 we get 6, 28, 496.

[4 marks] [2 marks]

[9 marks]

7. (i) The convergents of x_0 are the rational numbers

$$a_0, \quad a_0 + \frac{1}{a_1}, \quad a_0 + \frac{1}{a_1 + \frac{1}{a_2}}, \quad a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3}}}, \quad \dots$$

Alternatively, they may be defined as p_k/q_k where p_k and q_k satisfy the relations

$$p_0 = a_0, q_0 = 1, p_1 = a_0 a_1 + 1, q_1 = a_1,$$

$$p_{k+1} = a_{k+1} p_k + p_{k-1}, q_{k+1} = a_{k+1} q_k + q_{k-1}.$$

Bookwork.

[3 marks]

The continued fraction for π is [3, 7, 15, 1, ...]. The first four convergents of π are 3, 22/7, 333/106, 355/113. [I have checked that the standard University calculator has enough precision to do this calculation.] With calculator, from definition. [3 marks]

(ii) If $Q_k = 1$ then $x_k = P_k + \sqrt{n}$ so $a_k = [x_k] = P_k + [\sqrt{n}] = P_k + a_0$. Then $P_{k+1} = a_k - P_k = a_0 = P_1$ and $Q_{k+1} = n - P_{k+1}^2 = n - P_1^2 = (n - P_1)^2 / Q_0 = Q_1$. So both P_k and Q_k recur, and hence so do x_k and a_k . Bookwork. [6 marks]

(iii) Work out the continued fraction for $\sqrt{18}$.

k	P_k	Q_k	x_k	a_k	p_k	q_k
0	0	1	$\sqrt{18}$	4	4	1
1	4	2	$\frac{4+\sqrt{18}}{2}$	4	17	4
2	4	1	$4 + \sqrt{18}$	8	140	33
3	4	2	$\frac{4+\sqrt{18}}{2}$	4	577	136
4	4	1	$4 + \sqrt{18}$	8	4756	1121
5	4	2	$\frac{4+\sqrt{18}}{2}$	4	19601	4620

Solutions come from odd k for which $Q_{k+1} = 1$. So (x, y) = (17, 4), (577, 136), (19601, 4620). Similar to examples. [8 marks]

8. (i) n is a quadratic residue modulo p if there exists an integer x such that $x^2 \equiv n \pmod{p}$. Bookwork. [2 marks]

Since $6^2 \equiv -1 \pmod{37}$, -1 is a quadratic residue modulo 37. Understanding of definition. [2 marks]

$$\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4} \\ -1 & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

Bookwork.

[2 marks]

In the previous part, $37 \equiv 1 \pmod{4}$ and -1 is a quadratic residue modulo 37, in accordance with what we have just proved. Application of result. [1 marks]

(ii) Gauss' law of quadratic reciprocity: if p and q are distinct odd primes, then

$$\begin{pmatrix} p \\ \overline{q} \end{pmatrix} \begin{pmatrix} q \\ \overline{p} \end{pmatrix} = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4} \text{ or } q \equiv 1 \pmod{4}; \\ -1 & \text{if } p \equiv 3 \pmod{4} \text{ and } q \equiv 3 \pmod{4}. \end{cases}$$

(Any other way of stating it is equally acceptable.) *Bookwork*. [3 marks] So

$$\begin{pmatrix} \frac{5}{p} \end{pmatrix} = \begin{pmatrix} \frac{p}{5} \end{pmatrix} = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{5}; \\ -1 & \text{if } p \equiv \pm 2 \pmod{5}. \end{cases}$$

Simple application of result.

[2 marks]

(iii) Suppose x and y are coprime, and that p is an odd prime, not equal to 5, such that $p \mid (x^2 - 5y^2)$. If $p \mid x$ then $p \mid x^2$ so $p \mid 5y^2$ and then, since $p \nmid 5$, $p \mid y^2$ and hence $p \mid y$. This contradicts (x, y) = 1 so cannot be true, i.e. $p \nmid x$. Similarly $p \nmid y$.

Since $p \nmid y$, we have (p, y) = 1 and so y has an inverse modulo p, i.e. there exists an integer s such that $sy \equiv 1 \pmod{p}$. So taking $p \mid (x^2 - 5y^2)$, we get $x^2 \equiv 5y^2 \pmod{p} \implies s^2 x^2 \equiv 5 \pmod{p}$ so 5 is a quadratic residue modulo p. Deduce that $p \equiv \pm 1 \pmod{5}$. Unseen. [8 marks]