
1. (i)

(34, 21) = (21, 13) = (13, 8) = (8, 5) = (5, 3) = (3, 2) = (2, 1) = 1.

(89, 55) = (55, 34) = (34, 21) = · · · = 1.

13× 34− 21× 21 = 1.

Application of Euclid’s algorithm. [7 marks]

(ii) (Fn, Fn−1) = (Fn−1, Fn−2) because Fn−2 = Fn − Fn−1 and (a, b) =
(a + kb, b) for any a and b. Application of result from lectures. [3 marks]

So (Fn, Fn−1) = · · · = (F1, F0) = (1, 1) = 1. (Induction isn’t really necessary.)
Basic logic. [3 marks]

(iii) We know that rn ≥ 1 since it is not zero, and so rn−1 ≥ 1 as well. So
rn ≥ F0 and rn−1 ≥ F1. At each stage, we have ri−1 = qiri + ri+1 ≥ ri + ri+1,
because qi ≥ 1. So by induction rn−i ≥ Fi, and therefore a = r0 ≥ Fn. Unseen.

[6 marks]

The final statement is simply the contrapositive of the one just proved. Basic
logic. [1 marks]
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2. (i) Fermat’s theorem: if p is prime, then ap ≡ a (mod p) for any integer
a. Bookwork. [2 marks]

Taking p = 5, we get a5 ≡ a (mod 5). If 5 - a, then cancel a from both sides
to get a4 ≡ 1 (mod 5). If 5 | a, then both sides are 0. Either way, a4 ≡ 0 or 1
(mod 5). Similar to examples in lectures. [2 marks]

First calculate

22006 = 24×501+2 ≡ 1501 × 22 = 4 (mod 5).

But each of x4 and y4 is either 0 or 1 modulo 5, so their sum cannot equal 4
(either by trying all cases, or just by saying it’s obvious). Deduce there are no
solutions to the equation. Similar to example in lectures. [4 marks]

(ii)

(x + 4)4 = x4 + 4× 4x3 + 6× 16x2 + 4× 43x + 44 ≡ x4 (mod 16).

Similar to example in lectures. [2 marks]

By previous identity, to find all values of n4 modulo 16 we only need to look
at 04, 14, 24 and 34. These are 0, 1, 0, 1 respectively. So the possible values are
0 and 1. Similar to example in lectures. [4 marks]

(iii) We have n4 ≡ 0, 1 (mod 5) and n4 ≡ 0, 1 (mod 16). Now (5, 16)=1 so
each pair of possibilities gives a unique solution modulo 80 (Chinese Remainder
Theorem).

If n4 ≡ 0 (mod 5) and n4 ≡ 0 (mod 16) then n4 ≡ 0 (mod 80).

If n4 ≡ 1 (mod 5) and n4 ≡ 1 (mod 16) then n4 ≡ 1 (mod 80).

If n4 ≡ 0 (mod 16) then it is one of 0, 16, 32, 48, 64 (mod 80) and the only
one of these which is 1 (mod 5) is 16.

If n4 ≡ 1 (mod 16) then it is one of 1, 17, 33, 49, 65 (mod 80) and the only
one of these which is 0 (mod 5) is 65.

So the answers are 0, 1, 16 and 65, all modulo 80. Similar to example in
lectures. [6 marks]
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3. (i) Start with k = n − 1 and compute bk (mod n). If it not 1 then fail.
While k is even, halve k and compute bk (mod n). Fail if we ever find b2k ≡ 1
(mod n) but bk 6≡ ±1 (mod n). Otherwise pass. Bookwork. [3 marks]

If n is prime, then bn−1 ≡ 1 (mod n) by Fermat and the only square roots of
1 are ±1, so n passes the test. Bookwork. [2 marks]

(ii) (a) 210 = 1024 ≡ 1 (mod 341) (probably using a calculator) and so 2340

and 2170 are both 1 (mod 341). But 285 ≡ 25 = 32 so we fail the test. Conclude
that 341 is a pseudoprime to the base 2 but not a strong pseudoprime, and so
not prime.

(b) 35 = 243 ≡ 1 (mod 121) and so 3120, 360, 330 and 315 are all 1 (mod 121).
Test passed, so 121 is a strong pseudoprime to base 3, but not prime since it is
112.

(c) 224 = 16777216 ≡ 1 (mod 221) and so 2220 = 29×24+4 ≡ 24 = 16
(mod 221). Test failed, so not a pseudoprime to base 2 and certainly not a
strong pseudoprime. Similar to examples in lectures. [9 marks]

(iii) Let x = br. We have x2 ≡ 1 (mod n) but x 6≡ ±1 (mod n). Now
(x− 1, n) is certainly a factor of n. If it is equal to n, then n | (x− 1) so x ≡ 1
(mod n). If it is equal to 1, then n | (x2 − 1) implies n | (x + 1) so x ≡ −1
(mod n). Conclude that (x − 1, n) must be a proper factor of n. Result from
lectures, after putting x = br. [4 marks]

Taking n = 341 and b = 2, we have 322 ≡ 1 (mod 341) and so (31, 341) = 31
and (33, 341) = 11 are proper factors of 341. [2 marks]
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4. (i) In n! = n× (n− 1)×· · · 2× 1 there are
[

n
p

]
factors which are multiples

of p,
[

n
p2

]
which are multiples of p2, and so on. As p is prime, no powers of p can

come from anywhere else. So the formula holds. Bookwork. [2 marks]

This gives that the power of 5 dividing 2006! is 401 + 80 + 16 + 3 = 500. The
power of 2 is greater, so the number of zeroes is 500. Similar to examples.

[2 marks]

The formula gives 28! = 225×55×· · · , 20! = 218×54×· · · and 8! = 27×51×· · · .
Putting this together gives

(
28
8

)
= 20 × 50 × · · · so there are no zeroes. (Could

have got this by looking just at 5’s or just at 2’s.) Similar to examples. [4 marks]

(ii) φ(n) is the number of integers in {1, . . . , n} which are coprime to n.
In {1, . . . , pr} there are pr−1 multiples of p and these are the only numbers not
coprime to pr, hence the formula. In general,

φ(n) = pn1−1
1 (p1 − 1)× · · · × pnk−1

k (pk − 1)

= n(1− 1

p1

) · · · (1− 1

pk

).

Either is OK, or any variant. Bookwork. [5 marks]

(iii) We have

φ(100!) =
∏

5 6=p≤100

pvp−1(p− 1)× 5v5−1 × 4

where vp is the exponent of the greatest power of p dividing 100!. The 5’s in
this come from the 5v5−1, and from the (p− 1)s for p = 11, 31, 41, 61, 71. By the
previous formula, v5 = 24 so the answer is 24− 1 + 5 = 28. Unseen. [7 marks]

5. (i) Each line shows that rj+1 ≡ 10rj (mod m), so (by induction?) rj ≡
10j−1 (mod m). There are only finitely many residues mod m, so we must have
ri = ri+k for some i ≥ 1 and k ≥ 1. Let i be the least such, and suppose that
i > 1. Then 10i ≡ 10i+k (mod m) and since (10, m) = 1 we may divide by 10 to
get 10i−1 ≡ 10i−1+k (mod m), contradicting minimality. So i = 1. Now let k be
the least such that r1+k = r1 = 1; then k is the least such that 10k ≡ 1 (mod m),
which by definition is the order of 10 modulo m. Bookwork. [7 marks]

(ii) Compute that ord7(10) = 6 and ord13(10) = 6. Using the hint, 108 ≡
−1 (mod 17) so 1016 ≡ 1 (mod 17). So ord17(10) divides 16 but not 8, so is 16.
Similar to examples. [7 marks]

(iii) If p is prime, then ordp(10) = p− 1 if and only if 10 is a primitive root
modulo p, by definition. Almost bookwork. [6 marks]
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6. (i) d(n) is the number of divisors of n. σ(n) is the sum of the divisors of
n. The divisors of pa are pk for 1 ≤ k ≤ a, so their sum is 1 + · · · + pa. This is
equal to (pa+1 − 1)/(p− 1) as can be checked by multiplying out.

σ is multiplicative means that if (m, n) = 1 then σ(mn) = σ(m)σ(n). It is
true because any divisor di of mn splits uniquely into the product of a divisor xi

of m and a divisor yi of n, and then∑
d|m

d

×

∑
d′|n

d′

 =
∑

dd′|mn

dd′.

Using these two facts, we get

σ(pn1
1 × · · · × pnk

k ) =
pn1+1

1 − 1

p1 − 1
· · · p

nk+1
k − 1

pk − 1
.

Bookwork. [9 marks]

(ii) Table of σ(pa):

2 3 5 7
1 3 4 6 8
2 7 13 31 57
3 15 40
4 31

and then σ(p) = p + 1 for 11 ≤ p ≤ 59. We must make up 60 by taking products
of numbers from separate columns. So

σ(59) = 60

σ(38) = σ(19× 2) = 20× 3 = 60

σ(24) = σ(3× 23) = 4× 15 = 60.

Similar to examples. [5 marks]

(iii) A perfect number is a number n satisfying σ(n) = 2n or equivalently
s(n) = n. Suppose that n = 2s(2s+1 − 1) with 2s+1 − 1 prime. Then

σ(n) = σ(2s)σ(2s+1 − 1)

= (1 + 2 + · · ·+ 2s)2s+1

= (2s+1 − 1)2s+1

= 2× 2s(2s+1 − 1)

= 2n

so n is a perfect number. Bookwork. [4 marks]

Putting s = 1, 2, 4 we get 6, 28, 496. [2 marks]

Paper Code MATH 342 Page 6 of 8 CONTINUED



7. (i) The convergents of x0 are the rational numbers

a0, a0 +
1

a1

, a0 +
1

a1 +
1

a2

, a0 +
1

a1 +
1

a2 +
1

a3

, . . . .

Alternatively, they may be defined as pk/qk where pk and qk satisfy the relations

p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1,

pk+1 = ak+1pk + pk−1, qk+1 = ak+1qk + qk−1.

Bookwork. [3 marks]

The continued fraction for π is [3, 7, 15, 1, . . . ]. The first four convergents of
π are 3, 22/7, 333/106, 355/113. [I have checked that the standard University
calculator has enough precision to do this calculation.] With calculator, from
definition. [3 marks]

(ii) If Qk = 1 then xk = Pk +
√

n so ak = [xk] = Pk +[
√

n] = Pk +a0. Then
Pk+1 = ak − Pk = a0 = P1 and Qk+1 = n− P 2

k+1 = n− P 2
1 = (n− P1)

2/Q0 = Q1.
So both Pk and Qk recur, and hence so do xk and ak. Bookwork. [6 marks]

(iii) Work out the continued fraction for
√

18.

k Pk Qk xk ak pk qk

0 0 1
√

18 4 4 1

1 4 2 4+
√

18
2

4 17 4

2 4 1 4 +
√

18 8 140 33

3 4 2 4+
√

18
2

4 577 136

4 4 1 4 +
√

18 8 4756 1121

5 4 2 4+
√

18
2

4 19601 4620

Solutions come from odd k for which Qk+1 = 1. So (x, y) = (17, 4), (577, 136),
(19601, 4620). Similar to examples. [8 marks]
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8. (i) n is a quadratic residue modulo p if there exists an integer x such that
x2 ≡ n (mod p). Bookwork. [2 marks]

Since 62 ≡ −1 (mod 37), −1 is a quadratic residue modulo 37. Understanding
of definition. [2 marks]

(
−1

p

)
=

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4).

Bookwork. [2 marks]

In the previous part, 37 ≡ 1 (mod 4) and −1 is a quadratic residue modulo
37, in accordance with what we have just proved. Application of result. [1 marks]

(ii) Gauss’ law of quadratic reciprocity: if p and q are distinct odd primes,
then (

p

q

)(
q

p

)
=

{
1 if p ≡ 1 (mod 4) or q ≡ 1 (mod 4);

−1 if p ≡ 3 (mod 4) and q ≡ 3 (mod 4).

(Any other way of stating it is equally acceptable.) Bookwork. [3 marks]

So (
5

p

)
=

(
p

5

)
=

{
1 if p ≡ ±1 (mod 5);

−1 if p ≡ ±2 (mod 5).

Simple application of result. [2 marks]

(iii) Suppose x and y are coprime, and that p is an odd prime, not equal
to 5, such that p | (x2 − 5y2). If p | x then p | x2 so p | 5y2 and then, since p - 5,
p | y2 and hence p | y. This contradicts (x, y) = 1 so cannot be true, i.e. p - x.
Similarly p - y.

Since p - y, we have (p, y) = 1 and so y has an inverse modulo p, i.e. there
exists an integer s such that sy ≡ 1 (mod p). So taking p | (x2 − 5y2), we get
x2 ≡ 5y2 (mod p) =⇒ s2x2 ≡ 5 (mod p) so 5 is a quadratic residue modulo p.
Deduce that p ≡ ±1 (mod 5). Unseen. [8 marks]
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