
1. (i) Use Euclid’s algorithm to calculate (34, 21) and (89, 55). Find integers
s and t such that 34s + 21t = (34, 21). [7 marks]

(ii) The Fibonacci numbers are a sequence of numbers Fn defined as follows:

F0 = F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2).

So the first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, . . . . Explain why
(Fn, Fn−1) = (Fn−1, Fn−2) for all n ≥ 2 and hence show that any two consec-
utive Fibonacci numbers are coprime: that is, (Fn, Fn−1) = 1 for all n ≥ 1.

[6 marks]

(iii) Suppose that a and b are two positive integers with a > b such that
Euclid’s algorithm applied to a and b takes precisely n steps. In other words, the
steps of Euclid’s algorithm are as follows (after setting r0 = a and r1 = b):

r0 = q1r1 + r2

r1 = q2r2 + r3

...

rn−1 = qnrn.

where rn 6= 0. Show that a ≥ Fn. Deduce that, to compute the GCD of any
two numbers both smaller than Fn, Euclid’s algorithm takes no more than n− 1
steps. [7 marks]

2. (i) State Fermat’s theorem. Explain how to deduce that, if n is any
integer, then n4 ≡ 0 or 1 (mod 5). Show that there do not exist integers x and
y satisfying the equation

x4 + y4 = 22006.

[8 marks]

(ii) Show that (x + 4)4 ≡ x4 (mod 16). If n is an integer, what are the
possible values of n4 (mod 16)? [6 marks]

(iii) If n is an integer, what are the possible values of n4 (mod 80)? Justify
your answer. [6 marks]
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3. (i) Describe Miller’s test to base b for the primality of an integer n with
(b, n) = 1. Explain why, if n is prime, then it always passes Miller’s test.

[5 marks]

(ii) For each of the following values of n and b, apply Miller’s test to n, with
base b. In each case, decide whether n is a pseudoprime to base b and whether n
is a strong pseudoprime to base b. Also state whether n is prime.

(a) n=341, b=2; (b) n=121, b=3; (c) n=221, b=2.

[You may wish first to compute 210 (mod 341), 35 (mod 121) and 224 (mod 221).]
[9 marks]

(iii) Suppose that n is a pseudoprime to the base b but fails Miller’s test:
that is, there exists an integer r such that b2r ≡ 1 (mod n) but br 6≡ ±1 (mod n).
Show that (br − 1, n) is a proper factor of n (i.e., a factor of n which is neither 1
nor n). Apply this in case (a) to find a proper factor of 341. [6 marks]

4. (i) Let p be prime and m a positive integer. Explain why the largest power
of p which divides m! is pa, where

a =

[
m

p

]
+

[
m

p2

]
+

[
m

p3

]
+ · · · .

Find the number of zeroes at the end of 2006!. Find the number of zeroes at the
end of the binomial coefficient (

28

8

)
=

28!

20!8!
.

[8 marks]

(ii) Define Euler’s function φ(n) and explain why φ(pr) = pr−1(p − 1). If
the prime factorisation of n is n = pr1

1 × · · · × prk
k , write down a formula for φ(n).

[5 marks]

(iii) Using your formula from (ii), compute the number of zeroes at the end
of φ(100!). [You may assume that 2 divides φ(100!) to a higher power than 5
does.] [7 marks]
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5. (i) Let m > 1 be an integer not divisible by 2 or 5. Consider the standard
equations which occur in the calculation of the decimal expansion of 1

m
:

1 = r1,

10r1 = mq1 + r2,

10r2 = mq2 + r3,

...

where 0 < ri < m and 0 ≤ qi ≤ 9 for each i, so that the qi are the decimal
digits. Prove that, for j ≥ 0, rj+1 ≡ 10j (mod m), that the length of the period
of 1

m
in decimal notation is the order of 10 modulo m, and that the period begins

immediately after the decimal point. [7 marks]

(ii) Find the lengths of the decimal periods for the fractions

1

7
,

1

13
,

1

17
.

[You may like to know that 108 + 1 = 17× 5882353.] [7 marks]

(iii) Suppose now that p is prime. Complete the sentence “The length of
the period is p − 1 if and only if 10 is a modulo p”, define any
terms you have used and show that it is true. [6 marks]

6. (i) Define the functions d(n) and σ(n). Show that, if p is prime and a ≥ 1,

then σ(pa) = 1 + p + p2 + · · ·+ pa = pa+1−1
p−1

. Explain what it means to say that σ
is multiplicative and prove that this is so. If the prime factorisation of an integer
n is n = pn1

1 × · · · × pnk
k , write down a general formula for σ(n). [9 marks]

(ii) Make a table of σ(pa) for small p and a and use it to find all positive
integers n such that σ(n) = 60. [5 marks]

(iii) Define a perfect number. Show that, if s ≥ 1 is an integer such that
2s+1−1 is prime, then 2s(2s+1−1) is a perfect number. Write down three perfect
numbers. [6 marks]
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7. (i) If the continued fraction of a real number x0 is x0 = [a0, a1, a2, . . . ],
explain what the convergents of x0 are. Using your calculator, find the first four
terms in the continued fraction of π. Find the first four convergents of π.

[6 marks]

For the continued fraction expansion of x0 =
√

n where n is not a square, you
may assume the standard formulae:

P0 = 0, Q0 = 1, xk =
Pk +

√
n

Qk

, ak = [xk],

Pk+1 = akQk − Pk, Qk+1 =
(n− P 2

k+1)

Qk

.

(ii) Suppose that Qk = 1 for some k ≥ 1. Show that Pk+1 = P1, Qk+1 = Q1

and that the continued fraction recurs:
√

n = [a0, a1, . . . , ak]. [6 marks]

(iii) Find three solutions in integers x > 0, y > 0 to the equation

x2 − 18y2 = 1.

[8 marks]

8. (i) Let p be an odd prime. Explain what it means for an integer n to be a
quadratic residue modulo p. Show directly that −1 is a quadratic residue modulo
37. State a result relating

(−1
p

)
to the value of p modulo 4 and comment on how

it relates to your previous answer. [7 marks]

(ii) State Gauss’ law of quadratic reciprocity. Show that, if p is an odd
prime not equal to 5, then 5 is a quadratic residue modulo p if and only if p ≡ ±1
(mod 5). [5 marks]

(iii) Consider the function q(x, y) = x2 − 5y2. We are interested in what
values this function can take when x and y are coprime integers.

Suppose there is an odd prime p 6= 5 such that p | x2 − 5y2 for some coprime
integers x and y. Show that if p | x then p | y as well, and deduce that p does
not divide x. Similarly show that p - y. Show that y has an inverse modulo p
and hence that 5 is a quadratic residue modulo p.

Deduce that, apart from maybe 5, the only odd primes which can divide
q(x, y), for x and y coprime, are those congruent to ±1 (mod 5). [8 marks]
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