1. (i) Use Euclid's algorithm to calculate $(34,21)$ and $(89,55)$. Find integers s and t such that $34 s+21 t=(34,21)$.
(ii) The Fibonacci numbers are a sequence of numbers F_{n} defined as follows:

$$
F_{0}=F_{1}=1, \quad F_{n}=F_{n-1}+F_{n-2} \quad(n \geq 2)
$$

So the first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, ... Explain why $\left(F_{n}, F_{n-1}\right)=\left(F_{n-1}, F_{n-2}\right)$ for all $n \geq 2$ and hence show that any two consecutive Fibonacci numbers are coprime: that is, $\left(F_{n}, F_{n-1}\right)=1$ for all $n \geq 1$.
[6 marks]
(iii) Suppose that a and b are two positive integers with $a>b$ such that Euclid's algorithm applied to a and b takes precisely n steps. In other words, the steps of Euclid's algorithm are as follows (after setting $r_{0}=a$ and $r_{1}=b$):

$$
\begin{aligned}
r_{0} & =q_{1} r_{1}+r_{2} \\
r_{1} & =q_{2} r_{2}+r_{3} \\
& \vdots \\
r_{n-1} & =q_{n} r_{n} .
\end{aligned}
$$

where $r_{n} \neq 0$. Show that $a \geq F_{n}$. Deduce that, to compute the GCD of any two numbers both smaller than F_{n}, Euclid's algorithm takes no more than $n-1$ steps.
[7 marks]
2. (i) State Fermat's theorem. Explain how to deduce that, if n is any integer, then $n^{4} \equiv 0$ or $1(\bmod 5)$. Show that there do not exist integers x and y satisfying the equation

$$
x^{4}+y^{4}=2^{2006}
$$

[8 marks]
(ii) Show that $(x+4)^{4} \equiv x^{4}(\bmod 16)$. If n is an integer, what are the possible values of $n^{4}(\bmod 16)$?
(iii) If n is an integer, what are the possible values of $n^{4}(\bmod 80)$? Justify your answer.
3. (i) Describe Miller's test to base b for the primality of an integer n with $(b, n)=1$. Explain why, if n is prime, then it always passes Miller's test.
[5 marks]
(ii) For each of the following values of n and b, apply Miller's test to n, with base b. In each case, decide whether n is a pseudoprime to base b and whether n is a strong pseudoprime to base b. Also state whether n is prime.
(a) $n=341, b=2$;
(b) $n=121, b=3$;
(c) $n=221, b=2$.
[You may wish first to compute $2^{10}(\bmod 341), 3^{5}(\bmod 121)$ and $\left.2^{24}(\bmod 221).\right]$ [9 marks]
(iii) Suppose that n is a pseudoprime to the base b but fails Miller's test: that is, there exists an integer r such that $b^{2 r} \equiv 1(\bmod n)$ but $b^{r} \not \equiv \pm 1(\bmod n)$. Show that $\left(b^{r}-1, n\right)$ is a proper factor of n (i.e., a factor of n which is neither 1 nor n). Apply this in case (a) to find a proper factor of 341.
[6 marks]
4. (i) Let p be prime and m a positive integer. Explain why the largest power of p which divides $m!$ is p^{a}, where

$$
a=\left[\frac{m}{p}\right]+\left[\frac{m}{p^{2}}\right]+\left[\frac{m}{p^{3}}\right]+\cdots .
$$

Find the number of zeroes at the end of 2006!. Find the number of zeroes at the end of the binomial coefficient

$$
\binom{28}{8}=\frac{28!}{20!8!}
$$

[8 marks]
(ii) Define Euler's function $\phi(n)$ and explain why $\phi\left(p^{r}\right)=p^{r-1}(p-1)$. If the prime factorisation of n is $n=p_{1}^{r_{1}} \times \cdots \times p_{k}^{r_{k}}$, write down a formula for $\phi(n)$.
[5 marks]
(iii) Using your formula from (ii), compute the number of zeroes at the end of $\phi(100!)$. [You may assume that 2 divides $\phi(100!)$ to a higher power than 5 does.]
[7 marks]
5. (i) Let $m>1$ be an integer not divisible by 2 or 5 . Consider the standard equations which occur in the calculation of the decimal expansion of $\frac{1}{m}$:

$$
\begin{aligned}
1 & =r_{1}, \\
10 r_{1} & =m q_{1}+r_{2}, \\
10 r_{2} & =m q_{2}+r_{3}
\end{aligned}
$$

where $0<r_{i}<m$ and $0 \leq q_{i} \leq 9$ for each i, so that the q_{i} are the decimal digits. Prove that, for $j \geq 0, r_{j+1} \equiv 10^{j}(\bmod m)$, that the length of the period of $\frac{1}{m}$ in decimal notation is the order of 10 modulo m, and that the period begins immediately after the decimal point.
[7 marks]
(ii) Find the lengths of the decimal periods for the fractions

$$
\frac{1}{7}, \quad \frac{1}{13}, \quad \frac{1}{17} .
$$

[You may like to know that $10^{8}+1=17 \times 5882353$.]
(iii) Suppose now that p is prime. Complete the sentence "The length of the period is $p-1$ if and only if 10 is a \qquad modulo p ", define any terms you have used and show that it is true.
[6 marks]
6. (i) Define the functions $d(n)$ and $\sigma(n)$. Show that, if p is prime and $a \geq 1$, then $\sigma\left(p^{a}\right)=1+p+p^{2}+\cdots+p^{a}=\frac{p^{a+1}-1}{p-1}$. Explain what it means to say that σ is multiplicative and prove that this is so. If the prime factorisation of an integer n is $n=p_{1}^{n_{1}} \times \cdots \times p_{k}^{n_{k}}$, write down a general formula for $\sigma(n)$. [9 marks]
(ii) Make a table of $\sigma\left(p^{a}\right)$ for small p and a and use it to find all positive integers n such that $\sigma(n)=60$.
(iii) Define a perfect number. Show that, if $s \geq 1$ is an integer such that $2^{s+1}-1$ is prime, then $2^{s}\left(2^{s+1}-1\right)$ is a perfect number. Write down three perfect numbers.
7. (i) If the continued fraction of a real number x_{0} is $x_{0}=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$, explain what the convergents of x_{0} are. Using your calculator, find the first four terms in the continued fraction of π. Find the first four convergents of π.
[6 marks]
For the continued fraction expansion of $x_{0}=\sqrt{n}$ where n is not a square, you may assume the standard formulae:

$$
\begin{gathered}
P_{0}=0, \quad Q_{0}=1, \quad x_{k}=\frac{P_{k}+\sqrt{n}}{Q_{k}}, \quad a_{k}=\left[x_{k}\right], \\
P_{k+1}=a_{k} Q_{k}-P_{k}, \quad Q_{k+1}=\frac{\left(n-P_{k+1}^{2}\right)}{Q_{k}} .
\end{gathered}
$$

(ii) Suppose that $Q_{k}=1$ for some $k \geq 1$. Show that $P_{k+1}=P_{1}, Q_{k+1}=Q_{1}$ and that the continued fraction recurs: $\sqrt{n}=\left[a_{0}, \overline{a_{1}, \ldots, a_{k}}\right]$.
(iii) Find three solutions in integers $x>0, y>0$ to the equation

$$
x^{2}-18 y^{2}=1
$$

[8 marks]
8. (i) Let p be an odd prime. Explain what it means for an integer n to be a quadratic residue modulo p. Show directly that -1 is a quadratic residue modulo 37. State a result relating $\left(\frac{-1}{p}\right)$ to the value of p modulo 4 and comment on how it relates to your previous answer.
[7 marks]
(ii) State Gauss' law of quadratic reciprocity. Show that, if p is an odd prime not equal to 5 , then 5 is a quadratic residue modulo p if and only if $p \equiv \pm 1$ $(\bmod 5)$.
[5 marks]
(iii) Consider the function $q(x, y)=x^{2}-5 y^{2}$. We are interested in what values this function can take when x and y are coprime integers.

Suppose there is an odd prime $p \neq 5$ such that $p \mid x^{2}-5 y^{2}$ for some coprime integers x and y. Show that if $p \mid x$ then $p \mid y$ as well, and deduce that p does not divide x. Similarly show that $p \nmid y$. Show that y has an inverse modulo p and hence that 5 is a quadratic residue modulo p.

Deduce that, apart from maybe 5 , the only odd primes which can divide $q(x, y)$, for x and y coprime, are those congruent to $\pm 1(\bmod 5)$. [8 marks]

