1. (i) Use Euclid’s algorithm to calculate (34,21) and (89, 55). Find integers
s and t such that 34s + 21t = (34, 21). [7 marks|

(ii) The Fibonacci numbers are a sequence of numbers F}, defined as follows:
F0:F1 = ]_, Fn:Fn_1+Fn_2 (TZZ 2)

So the first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, .... Explain why
(Fn, Friq) = (Fh_1, F,—2) for all n > 2 and hence show that any two consec-
utive Fibonacci numbers are coprime: that is, (F,, F,,_1) = 1 for all n > 1.

[6 marks|

(iii) Suppose that a and b are two positive integers with a > b such that
Euclid’s algorithm applied to a and b takes precisely n steps. In other words, the
steps of Euclid’s algorithm are as follows (after setting ro = a and r = b):

ro = q17T1 + 72

T = Qoo + 73

T'n—1 = QnTn.

where r, # 0. Show that a > F,. Deduce that, to compute the GCD of any
two numbers both smaller than F;,, Euclid’s algorithm takes no more than n — 1
steps. [7 marks|

2. (i) State Fermat’s theorem. Explain how to deduce that, if n is any
integer, then n* = 0 or 1 (mod 5). Show that there do not exist integers x and
y satisfying the equation

2yt = 92006,

[8 marks]
(ii) Show that (z + 4)* = 2? (mod 16). If n is an integer, what are the
possible values of n* (mod 16)? [6 marks|

(iii) If n is an integer, what are the possible values of n* (mod 80)? Justify
your answer. [6 marks]



3. (i) Describe Miller’s test to base b for the primality of an integer n with
(b,n) = 1. Explain why, if n is prime, then it always passes Miller’s test.
[5 marks|

(ii) For each of the following values of n and b, apply Miller’s test to n, with
base b. In each case, decide whether n is a pseudoprime to base b and whether n
is a strong pseudoprime to base b. Also state whether n is prime.

(a) n=341, b=2;  (b) n=121, b=3;  (c) n=221, b=2.

[You may wish first to compute 2!° (mod 341), 3° (mod 121) and 2** (mod 221).]
[9 marks]

(iii) Suppose that n is a pseudoprime to the base b but fails Miller’s test:
that is, there exists an integer r such that 5" = 1 (mod n) but " # +1 (mod n).
Show that (b" — 1,n) is a proper factor of n (i.e., a factor of n which is neither 1
nor n). Apply this in case (a) to find a proper factor of 341. [6 marks]

4. (i) Let p be prime and m a positive integer. Explain why the largest power
of p which divides m! is p*, where

(2] 2 )

Find the number of zeroes at the end of 2006!. Find the number of zeroes at the

end of the binomial coefficient
28\ 28!
8/ 2018
[8 marks]

(ii) Define Euler’s function ¢(n) and explain why ¢(p") = p"t(p — 1). If

the prime factorisation of n is n = pi* X - -- X p;*, write down a formula for ¢(n).
[5 marks]

(iii) Using your formula from (ii), compute the number of zeroes at the end

of ¢(100!). [You may assume that 2 divides ¢(100!) to a higher power than 5
does.] [7 marks]



5. (i) Let m > 1 be an integer not divisible by 2 or 5. Consider the standard
equations which occur in the calculation of the decimal expansion of W%:

L=mr,
107‘1 = mq + T,

107’2 = mq2 + 3,

where 0 < r; < m and 0 < ¢; < 9 for each i, so that the ¢; are the decimal
digits. Prove that, for j > 0, 7,11 = 10/ (mod m), that the length of the period
of % in decimal notation is the order of 10 modulo m, and that the period begins
immediately after the decimal point. [7 marks]

(ii) Find the lengths of the decimal periods for the fractions

1 1 1

T W
[You may like to know that 108 +1 = 17 x 5882353.] [7 marks]
(iii) Suppose now that p is prime. Complete the sentence “The length of
the period is p — 1 if and only if 10 is a modulo p”, define any
terms you have used and show that it is true. [6 marks|

6. (i) Define the functions d(n) and o(n). Show that, if p is prime and a > 1,
then o(p®) = 1+p+p*+---+p* = pa;ll_l. Explain what it means to say that o
is multiplicative and prove that this is so. If the prime factorisation of an integer

nisn=pi* x - x p.*, write down a general formula for o(n). [9 marks]

(ii) Make a table of o(p®) for small p and a and use it to find all positive
integers n such that o(n) = 60. [5 marks]

(i) Define a perfect number. Show that, if s > 1 is an integer such that

25+1 —1 is prime, then 2°(2°t1 — 1) is a perfect number. Write down three perfect
numbers. [6 marks]



7. (1) If the continued fraction of a real number xq is zo = [ag, a1, as,...],
explain what the convergents of xy are. Using your calculator, find the first four

terms in the continued fraction of 7. Find the first four convergents of .
[6 marks|

For the continued fraction expansion of z:g = y/n where n is not a square, you
may assume the standard formulae:

Pt yn

PO = 07 QO = 17 T ) ap = [‘rk]a
Qk
n— P?
Py = apQp — B, Qi1 = w
Qk
(ii) Suppose that @y = 1 for some k > 1. Show that Py 1 = P, Qrr1 = @4
and that the continued fraction recurs: /n = [ag, a1, .. -, ax. [6 marks|

(iii) Find three solutions in integers x > 0,y > 0 to the equation
r? —18y* = 1.

[8 marks|

8. (i) Let p be an odd prime. Explain what it means for an integer n to be a
quadratic residue modulo p. Show directly that —1 is a quadratic residue modulo
37. State a result relating (’?1) to the value of p modulo 4 and comment on how
it relates to your previous answer. [7 marks|

(ii) State Gauss’ law of quadratic reciprocity. Show that, if p is an odd
prime not equal to 5, then 5 is a quadratic residue modulo p if and only if p = +1

(mod 5). [5 marks]

(iii) Consider the function ¢(z,y) = x? — 5y*. We are interested in what
values this function can take when x and y are coprime integers.

Suppose there is an odd prime p # 5 such that p | 22 — 5y* for some coprime
integers x and y. Show that if p | x then p | y as well, and deduce that p does
not divide x. Similarly show that p 1 y. Show that y has an inverse modulo p
and hence that 5 is a quadratic residue modulo p.

Deduce that, apart from maybe 5, the only odd primes which can divide
q(z,y), for z and y coprime, are those congruent to +1 (mod 5). [8 marks|



