Solutions to 2MP62 May 1998 examination

1.

(i) $x \equiv 1 \mod 4 \Longrightarrow x \equiv 1 \text{ or } 5 \text{ or } 9 \mod 12$. Working mod 12 the given congruences are satisfied precisely by

 $x \equiv 0, 2, 4, 6, 8, 10;$

 $x \equiv 0, 3, 6, 9;$

 $x \equiv 1, 5, 9;$

 $x \equiv 5, 11;$

 $x \equiv 7$.

Since all possibilities mod 12 are included here, every x satisfies at least one of these congruences. **7 marks.** Unseen, but straightforward.

(ii) There are several approaches to this one. Here is one. Since $p^n|x(x-2)$ we certainly have p|x(x-2) and, by the standard property of primes (' $p|ab \Rightarrow p|a$ or p|b') we get p|x or p|(x-2).

Suppose p|x. Then we cannot have p|(x-2) as well, since if p|(x-2) then p|(x-(x-2)), i.e. p|2, which is false because we are given than p is an odd prime, i.e. p>2.

Now use the standard fact: $p/a \Rightarrow (p^n, a) = 1$ (given in lectures). We get $(p^n, x - 2) = 1$, and now we use

$$p^{n}|x(x-2),(p^{n},x-2)=1 \Rightarrow p^{n}|x.$$

(General, quotable fact from lectures: a|bc, $(a, b) = 1 \Rightarrow a|c$.)

Similarly, if p|(x-2) then we deduce in succession p/x, $(p^n, x) = 1$, $p^n|(x-2)$. Hence

$$p^n|x(x-2) \Rightarrow p^n|x \text{ or } p^n|(x-2).$$

For the converse, note $p^n|x \Rightarrow p^n|x(x-2)$, since x|x(x-2). Similarly $p^n|(x-2) \Rightarrow p^n|x(x-2)$. **7 marks.** Unseen.

To solve $x^2 \equiv 2x \mod 225 = 3^2 \cdot 5^2$ we start with:

 $x^2 \equiv 2x \mod 3^2 \cdot 5^2 \iff x^2 \equiv 2x \mod 3^2 \text{ and } \mod 5^2$

since $(3^2, 5^2) = 1$. Now using the above result (3 and 5 being odd primes!) we get 4 cases:

- (a) $x \equiv 0 \mod 9$ and mod 25: $x \equiv 0 \mod 225$.
- (b) $x \equiv 2 \mod 9$ and mod 25: $x \equiv 2 \mod 225$.
- (c) $x \equiv 0 \mod 9$ and $x \equiv 2 \mod 25$: substitute x = 9k in the second congruence to get $9k \equiv 2 \mod 25$. Now $9 \cdot 11 \equiv -1 \mod 25$ so multiplying by -11 gives $k \equiv -22 \equiv 3 \mod 25$. Thus $x = 9k \equiv 27 \mod 225$.
- (d) $x \equiv 2 \mod 9$ and $x \equiv 0 \mod 25$: substitute x = 25k in the first congruence to get $25k \equiv 7k \equiv 2 \mod 9$, so $k \equiv -1 \equiv 8 \mod 9$, giving $x \equiv 200 \mod 225$.

Hence the solutions are $x \equiv 0, 2, 27, 200 \mod 225$.

6 marks. Unseen.

2.

(i) Suppose that n = ab where a > 1, b > 1. Then

$$2^{n} - 1 = (2^{a} - 1)(2^{a(b-1)} + 2^{a(b-2)} + \ldots + 1).$$

Now the first bracket here is > 1 since a > 1 and, if the second bracket were 1 then the first bracket would be $2^n - 1$, which implies n = a, i.e. b = 1: contradiction with b > 1. Thus $2^n - 1$ is composite, since it is the product of two factors both > 1.

5 marks. Seen on an exercise sheet.

(ii) n is a pseudoprime to base 2 means that n is composite and $2^n \equiv 2 \mod n$. We have $2^{10} \equiv 1 \mod 11$, by Fermat's theorem (11 being prime) so $2^{340} \equiv (2^{10})^{34} \equiv 1^{34} \equiv 1$ mod 11. Similarly $2^{30} \equiv 1 \mod 31$, since 31 is prime, so $2^{330} \equiv 1 \mod 31$. Also, $2^{10} = (2^5)^2 =$ $32^2 \equiv 1^2 \equiv 1 \mod 31$. It follows that $2^{340} = 2^{330} 2^{10} = 1 \cdot 1 \equiv 1 \mod 31$. Hence $2^{340} \equiv 1 \mod 11$ and mod 31, hence mod $341 = 11 \cdot 31$, as 11 and 31 are primes. Hence $2^{341} \equiv 2 \mod 341$. Of course 341 is composite since it is $11 \cdot 31$.

8 marks. Seen on an exercise sheet.

(iii) Assume that n is a pseudoprime to base 2, so that n is composite and $2^n \equiv 2 \mod n$. The second of these, and $m-1=2^n-2$, immediately gives n|(m-1). The same factorization as (i) shows that $m=(2^n-1)|(2^{m-1}-1)$, so that $2^{m-1}\equiv 1 \mod m$. Thus $2^m\equiv 2 \mod m$. That m is composite follows from the fact that n is composite and (i).

7 marks. Unseen.

3. (i) Miller's test on n to base b (where n be an odd positive integer and b coprime to n). We use $\langle x \rangle$ to denote the least positive residue of $x \mod n$.

Step 1. Let k=n-1, $\langle b^k \rangle = r$. If r=1 then continue, otherwise n fails the test.

While k is even and r = 1 then repeat the following.

Step 2. Replace k by k/2, and replace r by the new value of $\langle b^k \rangle$.

When k fails to be even or r fails to be 1:

If r = 1 or n - 1 then n passes the test.

If $r \neq 1$ and $r \neq n-1$ then n fails the test.

7 marks. From lectures.

Using the power algorithm to find 7^{24} (mod 25):

$$7^1 \equiv 7, \ 7^2 \equiv 24, \ 7^4 \equiv 24^2 \equiv 1, \ 7^8 \equiv 1^2 \equiv 1, \ 7^{16} \equiv 1^2 \equiv 1 \pmod{25}$$

 $7^1 \equiv 7, \ 7^2 \equiv 24, \ 7^4 \equiv 24^2 \equiv 1, \ 7^8 \equiv 1^2 \equiv 1, \ 7^{16} \equiv 1^2 \equiv 1 \pmod{25}$. This gives, $7^{25-1} \equiv 7^{24} \equiv 7^8 \times 7^{16} \equiv 1$; the exponent 24 is even, so we continue to compute $7^{12} \equiv 7^4 \times 7^8 \equiv 1$; the exponent 12 is still even, so we continue to compute $7^6 \equiv 7^2 \times 7^4 \equiv 24 = 1$ 25-1, and so we stop, with 25 passing Miller's test to base 7.

Using the power algorithm to compute 6^{34} (mod 35):

$$6^1 \equiv 6, 6^2 \equiv 1, 6^4 \equiv 6^8 \equiv 6^{16} \equiv 6^{32} \equiv 1 \pmod{35}.$$

So, $6^{34} \equiv 6^2 \times 6^{32} \equiv 1$; the exponent 34 is even so we continue to compute $6^{17} \equiv 6^1 \times 6^{16} \equiv 6$, which is neither 1 nor $35 - 1 \pmod{35}$. So, 35 fails Miller's test to base 6.

8 marks. Seen similar.

(ii) Miller's test starts with $2^{n-1} \equiv 1 \mod n$. Here, $2^{n-1} = 2^{4p} = (2^p)^4 \equiv 1$ since $2^p \equiv 1 \mod n$ n. Next, as the power n-1=4p is even, we look at $2^{\frac{n-1}{2}}=2^{2p}$ which will be 1 for the same reason. The power $\frac{n-1}{2}=2p$ is still even, so we look at $2^{\frac{n-1}{4}}=2^p$, which is still 1 mod n. But now the power is p which is odd so we can't continue and n has passed Miller's test.

5 marks. Unseen.

4. (i) For $n \ge 1$ define $\phi(n)$ to be the number of integers x satisfying $1 \le x \le n$ and (x, n) = 1. If $n = p_1^{n_1} \dots p_k^{n_k}$ is the prime power decomposition of n (the p_i are distinct primes and each n_i is ≥ 1) then a formula for $\phi(n)$ is: $p_1^{n_1}(1-\frac{1}{p_1})\dots p_k^{n_k}(1-\frac{1}{p_k})$, or: $p_1^{n_1-1}(p_1-1)\dots p_k^{n_k-1}(p_k-1)$. 5 marks. From lectures.

 $\phi(2\times 7^2) = 1\times 7\times 6 = 2\times 3\times 7. \ \ \phi(2\times 5\times 17) = 1\times 4\times 16 = 2^6, \ \phi(2^4\times 5\times 257^5) = 1\times 10^6, \ \phi(2\times 5\times 17) = 1\times 10^6,$ $2^{3}(2-1) \times 4 \times 257^{4}(257-1) = 2^{13}257^{4}$.

3 marks. Seen similar.

Suppose p is prime and $p^2|n$. Let the power of p dividing n be $s \geq 2$. Then the formula for $\phi(n)$ contains a factor $p^{s-1}(p-1)$ and since $s-1 \ge 1$ this is divisible by p.

3 marks. Seen similar.

Suppose $\phi(n) = 2^k$. Then in the expression for $\phi(n)$ which is a product of terms $p^{s-1}(p-1)$ all these terms must be powers of 2. From the previous part there can be no odd primes p which satisfy $p^2|n$ (for that would give an odd factor to $\phi(n)$). So all the exponents s are 1 except possibly for that corresponding to p=2. Furthermore if p is an odd prime dividing n then the factor p-1 occurring in $\phi(n)$ must be a power of 2. Hence $p=2^r+1$ for some r. Hence n must have the form

$$n = 2^s q_1 q_2 \dots q_m, \tag{1}$$

where the q_i are distinct primes of the form $2^r + 1, r \ge 1$.

4 marks. Unseen.

(ii) Now suppose that $\phi(n) = 2^{31}$. We want n to be odd so s = 0 in (1), and the only primes available to us are $p = 2^r + 1$ for r = 1, 2, 4, 8, 16. The product of the terms p - 1 has to be 2^{31} . Since 1 + 2 + 4 + 8 + 16 = 31 the solution is

$$n = (2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1).$$

However, if n is even, then we can make t > 0 in (1), which means that $\phi(n)$ receives a factor of 2^{s-1} from the 2^s in n. Examples of suitable n are $n = 2^{17}(2^{16} + 1)$, $2^{25}(2^8 + 1)$, $2^{21}(2^4 + 1)(2^8 + 1)$. (or, of course, 2^{33}). **5 marks.** Unseen.

5. All congruences are mod m in what follows. Clearly

$$r_1 \equiv 1$$
, $r_2 \equiv 10r_1 \equiv 10$, $r_3 \equiv 10r_2 \equiv 10^2$, etc.,

and generally $r_{j+1} \equiv 10^j$. { A formal induction argument would not be required in a simple case like this. } It is also clear that the calculation of the decimal places q_i repeats when one of the remainders r_j becomes equal to a previous remainder r_i . I claim that when this happens, i=1. Proof: If i>1 and $r_{i+k}=r_i$ ($k\geq 1$) is the first repeat then $10r_{(i+k)-1}\equiv r_{i+k}=r_i\equiv 10r_{i-1}$ and 10 can be cancelled since $2\not\mid m$ and $5\not\mid m$, so that $r_{i-1+k}\equiv r_{i-1}$ and consequently these remainders are equal since both are between 1 and m-1. But this contradicts the assumption that $r_{i+k}=r_i$ is the first repeat.

Thus recurrence starts with $r_{k+1} = r_1 = 1$, i.e. $q_1 = q_{k+1}, q_2 = q_{k+2}$ and so on. Thus k is the smallest number such that $10^k \equiv 1$, i.e. the order of 10 mod m is k, which is the length of the period.

9 marks.

Now suppose p is prime, $p \neq 2, p \neq 5$. When the length of the period is 2k we have $r_{2k+1} \equiv 10^{2k} \equiv 1$ so that $(10^k)^2 \equiv 1$ and since the modulus is prime, this implies $10^k \equiv \pm 1$. But it cannot be 1 since the period is 2k not k so $r_{k+1} \equiv -1$, which in view of $0 < r_i < p$ implies $r_{k+1} = p - 1$.

4 marks.

$$r_2 \equiv 10, r_{k+2} \equiv 10^{k+1} = 10^k \cdot 10 \equiv -10 \equiv -r_2, \quad r_{k+3} \equiv 10^{k+1} = 10^k \cdot 10^2 \equiv -10^2 \equiv -r_3,$$

etc., i.e. $r_{k+j} + r_j \equiv 0$, j = 1, 2, ..., but both these are strictly between 0 and p so they must add up to p.

Finally, note that, since $10r_i = pq_i + r_{i+1}$ and $10r_{i+k} = pq_{i+k} + r_{i+k+1}$, we can add these two equations to give: $10(r_i + r_{i+k}) = p(q_i + q_{i+k}) + (r_{i+1} + r_{i+k+1})$, so that $10p = p(q_i + q_{i+k}) + p$ (from the previous result), so that $q_i + q_{i+k} = 9$, as required.

7 marks. All bookwork from lectures.

6. (i) 'g is a primitive root mod n' means that the order of g mod n is $\phi(n)$, i.e. the smallest k > 0 for which $g^k \equiv 1 \mod n$ is $k = \phi(n)$.

2 marks. From lectures.

(ii) Let n=ab where a>2, b>2 and (a,b)=1. Let (g,n)=1; that is: (g,ab)=1. First show that $\phi(a)$ is even. Proof: Since a>2, we must have either $a=2^k, k\geq 2$ or a has an odd prime factor. If $a=2^k, k\geq 2$, we have $\phi(a)=2^{k-1}$ which is even. If a has an odd prime factor p, then the formula for $\phi(a)$ has an even factor p-1. In either case, $\phi(a)$ is even. Alternative Proof: For any x coprime to a, pair x with a-x; note that we never have x=a-x, since that would mean a=2x and so x>1 and $(x,a)=(x,2x)\geq x>1$; this means that we have divided all positive integers coprime to a into pairs of distinct integers x,a-x; hence there are an even number of positive integers coprime to a; that is $\phi(a)$ is even, as required. [Either of these two proofs is acceptable]. Similarly, $\phi(b)$ is even. Now note the standard result that $(g,ab)=1\Rightarrow (g,a)=1$, and so $g^{\phi(a)}\equiv 1 \mod a$, by Euler's Theorem. Hence

$$g^{\phi(a)\phi(b)/2} = \left(g^{\phi(a)}\right)^{\phi(b)/2} \equiv 1^{\phi(b)/2} \mod a,$$

Note that here we use the fact that $\phi(b)$ is even, so that the power on the right is an integer. Similarly by interchanging a and b we get

$$g^{\phi(a)\phi(b)/2} = \left(g^{\phi(b)}\right)^{\phi(a)/2} \equiv 1^{\phi(a)/2} \mod b,$$

using the fact that $\phi(a)$ is even. Hence $g^{\phi(a)\phi(b)/2} \equiv 1 \mod a$ and mod b, and hence mod ab = n since (a,b) = 1 (Standard result: if the same congruence holds mod a and mod b then it holds mod a lcm(a,b), which here is ab since (a,b) = 1.) Using (a,b) = 1 again, and the general fact that this implies $\phi(a)\phi(b) = \phi(n)$, we find $g^{\phi(n)/2} \equiv 1 \mod n$. It follows that every a has order at most a mod a, and so there does not exist a of order a of order a, there does not exist a primitive root mod a.

8 marks. Bookwork

(iii) Working out powers of 7 mod 22 gives

This verifies that $\operatorname{ord}_{22}7 = 10 = \phi(22)$ and so 7 is a primitive root mod 22 (in fact the values of k up to 5 do that since the order of 7 mod 22 must be a factor of $\phi(22) = 10$, and once it is > 5 it must then be 10.)

3 marks. Seen similar in exercises.

(a) From table, $19 \equiv 7^9, 17 \equiv 7^7 \pmod{22}$ and the given equation $19^x \equiv 17 \pmod{22}$ becomes

$$7^{9x} \equiv 7^7 \pmod{22} \Leftrightarrow 9x \equiv 7 \pmod{10}$$

by the general results that, for a primitive root $g \mod n$: $g^a \equiv g^b \pmod n \Leftrightarrow a \equiv b \pmod {\phi(n)}$. This gives $x \equiv -7 \equiv 3 \mod 10$.

3 marks. Seen similar in exercises.

(b) Note that $y^5 \equiv -1 \pmod{22}$ implies that (y,22) = 1 since any common factor would have to divide the r.h.s. -1 of the congruence. Hence $y \equiv 7^x \pmod{22}$ for some x (since 7 is a primitive root). Also $7^5 \equiv -1$ from the table, hence *one* solution is $y \equiv 7$. The given congruence turns into

$$7^{5x} \equiv 7^5 \pmod{22} \iff 5x \equiv 5 \pmod{10}$$

by the same general results quoted in part (a). This gives $x \equiv 1 \mod 2$, i.e. $x \equiv 1, 3, 5, 7, 9 \pmod{10}$ which, from the table, gives: $y \equiv 7, 13, 21, 17, 19 \mod 22$.

4 marks. Seen similar in exercises.

7.

(i) $d(n) = \text{number of } x \ge 1 \text{ which are divisors of } n.$ $\sigma(n) = \text{the sum of the divisors of } n \text{ which are } \ge 1.$ $p^a \text{ has divisors } 1, p, p^2, \dots p^{a-1}, p^a \text{ so } d(p^a) = a+1.$ $\sigma(p^a) = 1 + p + p^2 + \dots p^a = (p^{a+1}-1)/(p-1).$ Writing $n = p_1^{n_1} \dots p_k^{n_k}$ (prime power factorization), $d(n) = (n_1+1) \dots (n_k+1)$ and

$$\sigma(n) = rac{p_1^{n_1+1}-1}{p_1-1} \dots rac{p_k^{n_k+1}-1}{p_k-1}.$$

4 marks. From lectures.

(ii) $d(n) = 15 = 3 \cdot 5$, so n must be of the form p^{14} or p^2q^3 for primes p, q. The minimal possibilities for n are $2^{14}, 2^2 \cdot 3^4, 3^2 \cdot 2^4$ and clearly the smallest of these is $3^2 \cdot 2^4 = 144$.

Here is a table of values of $\sigma(p^a)$ for small p and a. Since all rows and columns are strictly increasing, any further entries would be greater than 72 and so are irrelevant.

$a\downarrow$	$p \rightarrow$	2	3	5	7	11	13	17	 23	 71
1		3	4	6	8	12	14	18	 24	 72
2		7	13	31	57	133				
3		15	40	156						
4		31	121							
5		63								
6		127								

Now the following give all the ways of writing 72 as a product of entries in different columns of the table: 72 or $6 \cdot 12$ or $4 \cdot 18$ or $3 \cdot 24$ or $3 \cdot 4 \cdot 6$. These give

n = 71 or $5 \cdot 11$ or $3 \cdot 17$ or $2 \cdot 23$ or $2 \cdot 3 \cdot 5$.

That is: n = 71 or 55 or 51 or 46 or 30.

8 marks. Seen similar in exercises.

(iii) $n = 2^3 \cdot p \cdot q$ where p and q are odd primes with p < q.

So $\sigma(n) = 15 \cdot (p+1) \cdot (q+1)$, the three factors of n being coprime in pairs.

Thus $\sigma(n) = 3n$ gives 15(p+1)(q+1) = 24pq, i.e.

15(p+q+1) = 9pq, i.e. 5(p+q+1) = 3pq.

Now comes the key step: 5 divides the l.h.s. of this equation, so must divide the r.h.s. But p and q are primes, so this implies p = 5 or q = 5. Putting p = 5 gives 5(q+6) = 15q so q = 3 < p, so in fact we must have q = 5, giving p = 3.

Note that it is *not* enough to 'spot the solution' p = 3, q = 5; the question asks it to be shown that this is the *only* solution, which is what is done above.

8 marks. Unseen.

8.

(i) Draw the following table, using the given formulae.

k	P_k	Q_k	x_k	a_k
0	0	1	\sqrt{n}	d
1	d	2	$\frac{d+\sqrt{n}}{2}$	\mathbf{d}
2	d	1	$d + \sqrt[n]{n}$	2d

5 marks

Justification of a_0, a_1, a_2 as follows.

 $a_0 = [\sqrt{n}]$. But, for all $d \ge 1$, $d^2 < d^2 + 2 < d^2 + 2d + 1$ and so $d < \sqrt{d^2 + 2} < d + 1$, so that $[\sqrt{n}] = d$, i.e. $a_0 = d$.

$$a_1 = \left[\frac{d+\sqrt{n}}{2}\right] = \left[\frac{d+\left[\sqrt{n}\right]}{2}\right] = \frac{2d}{2} = d.$$

$$a_3 = \left[d+\sqrt{n}\right] = d+\left[\sqrt{n}\right] = d+d = 2d.$$

3 marks

The fact that $Q_2 = 1$ signals recurrence, so that $\sqrt{n} = [d, \overline{d, 2d}]$, as required.

1 mark

The recurrence relations for p_k, q_k are:

 $p_{k+1} = a_{k+1}p_k + p_{k-1}; q_{k+1} = a_{k+1}q_k + q_{k-1}$ which, together with the initial values:

$$p_0 = a_0, q_0 = 1, p_1 = a_0 a_1 + 1, q_1 = a_1$$
 defines all $p_k, \, q_k, \, \text{for} \, \, k \geq 0.$

2 marks

Taking d = 5 gives n = 27 i.e. $\sqrt{27} = [5, \overline{5, 10}]$.

k	a_k	p_k	q_k
0	5	5	1
1	5	26	5
2	10	265	51
3	5	1351	260

Using the identity $p_k^2 - nq_k^2 = (-1)^{k+1}Q_{k+1}$, we get two solutions: x = 26, y = 5 and x = 1351, y = 260.

4 marks

(ii) Draw the table:

Justification of a_0, a_1, a_2 as follows.

 $a_0 = [\sqrt{m}]$. But, for all $d \ge 2$, we have $d-1 \ge 1$ and so: $(d-1)^2 = d^2 - 2d + 1 = d^2 - 1 - 2(d-1) < d^2 - 1 < d^2$, giving: $d-1 < \sqrt{d^2 - 1} < d$, so that $[\sqrt{m}] = d-1$, i.e. $a_0 = d-1$.

$$a_1 = \left[\frac{d-1+\sqrt{m}}{2d-2}\right] = \left[\frac{d-1+\left[\sqrt{m}\right]}{2d-2}\right] = \frac{2d-2}{2d-2} = 1.$$

$$a_3 = \left[d-1+\sqrt{m}\right] = d-1+\left[\sqrt{m}\right] = (d-1)+(d-1) = 2d-2.$$

The fact that $Q_2 = 1$ signals recurrence, so that $\sqrt{m} = [d-1, \overline{1, 2d-2}]$, as required.

5 marks. Whole question similar to one in exercises.