Solutions to 2MP62 May 1998 examination

1.

(i) x=1mod4 =z =1 or 5 or 9 mod 12. Working mod 12 the given congruences are satisfied
precisely by

£=0,2,4,6,8,10;

z=0,3,6,9;
rz=1,5,9;
T = 95,11;
r="1.

Since all possibilities mod 12 are included here, every z satisfies at least one of these congruences.
7 marks. Unseen, but straightforward.

(ii) There are several approaches to this one. Here is one. Since p"|z(z — 2) we certainly have
p|z(z — 2) and, by the standard property of primes (‘plab = pl|a or p|b’) we get p|z or p|(z — 2).
Suppose p|z. Then we cannot have p|(z — 2) as well, since if p|(z — 2) then p|(z — (z — 2)),
i.e. p|2, which is false because we are given than p is an odd prime, i.e. p > 2.
Now use the standard fact: pfa = (p",a) = 1 (given in lectures). We get (p",z —2) =1,
and now we use
plz(z —2),(p",z-2)=1 = p"lz.

(General, quotable fact from lectures: a|bc, (a,b) =1 = alc.)
Similarly, if p|(z — 2) then we deduce in succession pjz, (p",z) = 1,p"|(z — 2). Hence

p'lz(z —2) = p"|z or p*|(z - 2).

For the converse, note p"|z = p"|z(z — 2), since z|z(z — 2). Similarly p"|(z — 2) = p"|z(z — 2).
7 marks. Unseen.

To solve z? = 2z mod 225 = 3? - 52 we start with:

22 = 22 mod 3? - 52 <= z? = 2z mod 3? and mod 52,

since (32,52?) = 1. Now using the above result (3 and 5 being odd primes!) we get 4 cases:

(a) x =0 mod 9 and mod 25: z = 0 mod 225.

(b) z =2 mod 9 and mod 25: z = 2 mod 225.

(¢) =0 mod 9 and z = 2 mod 25: substitute z = 9% in the second congruence to get 9k = 2
mod 25. Now 9 -11 = —1 mod 25 so multiplying by —11 gives k¥ = —22 = 3 mod 25. Thus
r = 9k = 27 mod 225.

(d) = 2 mod 9 and £ = 0 mod 25: substitute x = 25k in the first congruence to get
25k =Tk =2mod 9, so k = —1 = 8 mod 9, giving = 200 mod 225.

Hence the solutions are z = 0, 2,27,200 mod 225.

6 marks. Unseen.

2.
(i) Suppose that n = ab where a > 1,b > 1. Then

2" — 1= (20 —1)(220-D 4 20(b=2) 1 7),

Now the first bracket here is > 1 since a > 1 and, if the second bracket were 1 then the first
bracket would be 2™ — 1, which implies n = a, i.e. b = 1: contradiction with 6 > 1. Thus 2" — 1
is composite, since it is the product of two factors both > 1.

5 marks. Seen on an exercise sheet.



(ii) » is a pseudoprime to base 2 means that n is composite and 2" = 2 mod n.

We have 29 = 1 mod 11, by Fermat’s theorem (11 being prime) so 2340 = (210)34 = 134 = 1
mod 11. Similarly 23° = 1 mod 31, since 31 is prime, so 233* = 1 mod 31. Also, 210 = (2°)2 =
32?2 =12 = 1 mod 31. It follows that 2340 = 2339210 = 1.1 =1 mod 31. Hence 23*° =1 mod 11
and mod 31, hence mod 341 = 11- 31, as 11 and 31 are primes. Hence 234! = 2 mod 341. Of
course 341 is composite since it is 11 - 31.

8 marks. Seen on an exercise sheet.

(iii) Assume that n is a pseudoprime to base 2, so that n is composite and 2" = 2 mod n. The
second of these, and m —1 = 2™ — 2, immediately gives n|(m —1). The same factorization as (i)
shows that m = (2" — 1)|(2™~! — 1), so that 2™~! = 1 mod m. Thus 2™ = 2 mod m. That m
is composite follows from the fact that n is composite and (i).

7 marks. Unseen.

3. (i) Miller’s test on n to base b (where n be an odd positive integer and b coprime to n). We
use (z) to denote the least positive residue of z mod n.

Step 1. Let k =n — 1, (b¥) = r. If r = 1 then continue, otherwise n fails the test.

While k is even and r = 1 then repeat the following.

Step 2. Replace k by k/2, and replace r by the new value of (b*).

When £ fails to be even or r fails to be 1:

If r=1o0r n— 1 then n passes the test.

If r #1 and r # n — 1 then n fails the test.

7 marks. From lectures.

Using the power algorithm to find 724 (mod 25):

=717=247=242=1,7=12=1,7%=12=1 (mod 25).

This gives, 72571 = 724 = 78 x 7'6 = 1; the exponent 24 is even, so we continue to compute
712 = 7% x 78 = 1; the exponent 12 is still even, so we continue to compute 70 = 72 x 74 =24 =
25 — 1, and so we stop, with 25 passing Miller’s test to base 7.

Using the power algorithm to compute 63* (mod 35):

6!=6,62=1,6*=6%=65=632 =1 (mod 35).

So, 634 = 62 x 632 = 1; the exponent 34 is even so we continue to compute 67 = 6 x 616 = 6,
which is neither 1 nor 35 — 1 (mod 35). So, 35 fails Miller’s test to base 6.

8 marks. Seen similar.

(ii) Miller’s test starts with 2"~! = 1 mod n. Here, 2"~! = 2% = (2P)* = 1 since 2 = 1 mod
n. Next, as the power n — 1 = 4p is even, we look at 2" = 22 which will be 1 for the same
reason. The power "T_l = 2p is still even, so we look at 2" — 2P which is still 1 mod n. But
now the power is p which is odd so we can’t continue and n has passed Miller’s test.

5 marks. Unseen.

4. (i) For n > 1 define ¢(n) to be the number of integers z satisfying 1 < z < n and (z,n) = 1.
If n = pi*...pp* is the prime power decomposition of n (the p; are distinct primes and each n;
is > 1) then a formula for ¢(n) is: p}*(1— p%) PRl - pik), or: pHpy —1) ... pE  (pg — 1).
5 marks. From lectures.

P2xT) =1xTx6=2x3x7. p2x5x17) =1x4x16 =25 ¢(2* x5 x 257%) =
23(2 — 1) x 4 x 2574(257 — 1) = 2132574,
3 marks. Seen similar.

Suppose p is prime and p%|n. Let the power of p dividing n be s > 2. Then the formula for
#(n) contains a factor p* !(p — 1) and since s — 1 > 1 this is divisible by p.
3 marks. Seen similar.



Suppose ¢(n) = 2¥. Then in the expression for ¢(n) which is a product of terms p*~!(p — 1)
all these terms must be powers of 2. From the previous part there can be no odd primes p which
satisfy p?|n (for that would give an odd factor to #(n)). So all the exponents s are 1 except
possibly for that corresponding to p = 2. Furthermore if p is an odd prime dividing n then the
factor p — 1 occurring in ¢(n) must be a power of 2. Hence p = 2" + 1 for some r. Hence n must
have the form

n=2°q1q2 ... qm, (1)

where the ¢; are distinct primes of the form 2" + 1,7 > 1.
4 marks. Unseen.

(ii) Now suppose that ¢(n) = 23!. We want n to be odd so s = 0 in (1), and the only primes
available to us are p = 2" + 1 for r = 1,2,4,8,16. The product of the terms p — 1 has to be 23.
Since 1 +2 44+ 8 + 16 = 31 the solution is

n=(24+1)(2% +1)(2* + 1)(28 +1)(2'¢ + 1).

However, if n is even, then we can make ¢ > 0 in (1), which means that ¢(n) receives a factor
of 2°~! from the 2° in n. Examples of suitable n are
n=217(210 + 1), 225(28 + 1), 221(2* +1)(2% +1). (or, of course, 233).
5 marks. Unseen.

5. All congruences are mod m in what follows. Clearly
rm=1 ro=10r =10, r3=10ry = 102, etc.,

and generally 7411 = 107. { A formal induction argument would not be required in a simple case
like this. } It is also clear that the calculation of the decimal places g; repeats when one of the
remainders r; becomes equal to a previous remainder r;. I claim that when this happens, ¢ = 1.
Proof: If i > 1 and 7y = r; (k > 1) is the first repeat then 10r; 41 = ripg = 7 = 1071
and 10 can be cancelled since 2fm and 5f m, so that r;_1,x = r;_1 and consequently these
remainders are equal since both are between 1 and m — 1. But this contradicts the assumption
that r;1, = r; is the first repeat.

Thus recurrence starts with rgy1 =r1 =1, i.e. ¢1 = gk+1,92 = qr+2 and so on. Thus k is
the smallest number such that 10¥ = 1, i.e. the order of 10 mod m is k, which is the length of
the period.

9 marks.

Now suppose p is prime, p # 2,p # 5. When the length of the period is 2k we have

roky1 = 102 = 1 so that (10¥)2 = 1 and since the modulus is prime, this implies 10¥ = +1. But

it cannot be 1 since the period is 2k not k so rx+1 = —1, which in view of 0 < r; < p implies
Th+1 =p — L.
4 marks.

rg = 10,7540 = 1057 = 10F . 10 = =10 = —ry,  7py3 = 10FT = 10% - 102 = —10% = —rs,

etc., i.e. gy +7;, =0, j =1,2,..., but both these are strictly between 0 and p so they must
add up to p.

Finally, note that, since 10r; = pg; + 1341 and 1074, = pQi+k + Ti+k+1, We can add these two
equations to give: 10(r; + riyx) = p(¢i + gitk) + (rit1 + Titk+1), so that 10p = p(gi + gi+x) +p
(from the previous result), so that ¢; + ¢;+x = 9, as required.

7 marks. All bookwork from lectures.



6. (i) ‘g is a primitive root mod n’ means that the order of ¢ mod n is ¢(n), i.e. the smallest

k > 0 for which ¢* =1 mod n is k = ¢(n).
2 marks. From lectures.

(ii) Let n = ab where a > 2,b > 2 and (a,b) = 1. Let (g,n) = 1; that is: (g,ab) = 1. First show
that ¢(a) is even. Proof: Since a > 2, we must have either a = 2%,k > 2 or a has an odd prime
factor. If a = 2%, k > 2, we have ¢(a) = 2~! which is even. If @ has an odd prime factor p, then
the formula for ¢(a) has an even factor p— 1. In either case, ¢(a) is even. Alternative Proof: For
any z coprime to a, pair £ with a — z; note that we never have £ = a — z, since that would mean
a =2z and so z > 1 and (z,a) = (z,2z) > z > 1; this means that we have divided all positive
integers coprime to a into pairs of distinct integers x,a — x; hence there are an even number of
positive integers coprime to a; that is ¢(a) is even, as required. [Either of these two proofs is
acceptable]. Similarly, ¢(b) is even. Now note the standard result that (g,ab) =1 = (g,a) =1,
and so ¢?(*) =1 mod a, by Euler’s Theorem. Hence

g?@e(0)/2 — (g

6@)* O 2 10072 mod g,
Note that here we use the fact that ¢(b) is even, so that the power on the right is an integer.
Similarly by interchanging a and b we get

g#@H0/2 — (o) = 1012 moq o,

using the fact that ¢(a) is even. Hence g?(®#(®)/2 = 1 mod a and mod b, and hence mod ab = n
since (a,b) = 1 (Standard result: if the same congruence holds mod a and mod b then it holds
mod lem(a, b), which here is ab since (a,b) = 1.) Using (a,b) = 1 again, and the general fact
that this implies ¢(a)$(b) = H(n), we find g?™/2 = 1 mod n. Tt follows that every g has order
at most ¢(n)/2 mod n, and so there does not exist g of order ¢(n); that is, there does not exist
a primitive root mod n.

8 marks. Bookwork

(iii) Working out powers of 7 mod 22 gives

k|1 2 3 4 5 6 7 8 9 10
7"mod22|7 5 13 3 21 15 17 9 19 1

This verifies that orde7 = 10 = ¢(22) and so 7 is a primitive root mod 22 (in fact the values of
k up to 5 do that since the order of 7 mod 22 must be a factor of ¢(22) = 10, and once it is > 5
it must then be 10.)
3 marks. Seen similar in exercises.

(a) From table, 19 = 7°,17 = 77 (mod 22) and the given equation 19° = 17 (mod 22)
becomes

79 =77 (mod 22) © 9z =7 (mod 10)

by the general results that, for a primitive root g mod n: g% = g* (mod n) < a = b (mod #(n)).
This gives z = —7 = 3 mod 10.
3 marks. Seen similar in exercises.

(b) Note that 4> = —1 (mod 22) implies that (y,22) = 1 since any common factor would
have to divide the r.h.s. -1 of the congruence. Hence y = 7* (mod 22) for some z (since 7 is a
primitive root). Also 75 = —1 from the table, hence one solution is 4 = 7. The given congruence
turns into

752 = 7° (mod 22) < 5z =5 (mod 10)

4



by the same general results quoted in part (a). This gives x = 1 mod 2, i.e. x = 1,3,5,7,9 (mod 10)
which, from the table, gives: y = 7,13,21,17,19 mod 22.
4 marks. Seen similar in exercises.

7.

(i) d(n) = number of z > 1 which are divisors of n.
(n) = the sum of the divisors of n which are > 1.
@ has divisors 1,p,p?,...p* 1, p% so d(p?) = a + 1.
op®) =1+p+p*+...p" = (P - 1)/(p - 1).
Writing n = p{* ... p,* (prime power factorization),
d(n) =(n1+1)...(ng+1) and

B p71'l1+1 -1 ka'i'l -1
o(n) = — —
n Pk

4 marks. From lectures.
(ii) d(n) = 15 = 3 -5, so n must be of the form p'* or p2¢® for primes p,q. The minimal
possibilities for n are 214,22 . 3% 32.2* and clearly the smallest of these is 32 - 2* = 144.

Here is a table of values of o(p®) for small p and a. Since all rows and columns are strictly
increasing, any further entries would be greater than 72 and so are irrelevant.

al p— 2 3 5 7 11 13 17 .. 23 .. T1
1 3 4 6 8 12 14 18 ... 24 .. 72
2 7 13 31 57 133

3 15 40 156

4 31 121

5 63

6 127

Now the following give all the ways of writing 72 as a product of entries in different columns
of the table: 72 or 6-12 or 4- 18 or 3-24 or 3 -4 - 6. These give
n=7lor5-11or3-170r2-23 or 2-3-5.

That is: n = 71 or 55 or 51 or 46 or 30.
8 marks. Seen similar in exercises.

(iii) n = 23 - p - ¢ where p and ¢ are odd primes with p < q.

Soo(n)=15-(p+1)-(g+ 1), the three factors of n being coprime in pairs.

Thus o(n) = 3n gives 15(p + 1)(g + 1) = 24pq, i.e.

15(p+q+1) =9pq, ie. 5(p+q+1)=3pg.

Now comes the key step: 5 divides the 1.h.s. of this equation, so must divide the r.h.s. But p
and q are primes, so this implies p = 5 or ¢ = 5. Putting p = 5 gives 5(¢+6) = 15¢ so ¢ = 3 < p,
so in fact we must have ¢ = 5, giving p = 3.

Note that it is not enough to ‘spot the solution’ p = 3,¢ = 5; the question asks it to be shown

that this is the only solution, which is what is done above.
8 marks. Unseen.

8.

(i) Draw the following table, using the given formulae.
k ‘ P, Q T Qg
0] O 1 vn o d

1| 4 2 4R g
2| d 1 d+yn 2d



5 marks

Justification of ag,a1,ay as follows.
ag = [v/n]. But, foralld > 1,d> < d?+2 < d?+2d+1andsod < vVd?+2 < d+1, so that
[\/m = d, i.e. ag = d.
_ [d+v/n d+ _2d _
o= [498) = [£4] - g -

2 —
az=[d+/n]=d+[y/n]=d+d=2d.
3 marks

The fact that Q2 = 1 signals recurrence, so that \/n = [d, d, 2d], as required.
1 mark

The recurrence relations for pg, g5 are:
Pk+1 = Ok+1Pk + Pk—1;Qk+1 = Ok+19k + k-1
which, together with the initial values:
Po = ag,q0 = 1,p1 = apa1 +1,q1 = ay
defines all pg, g, for & > 0.
2 marks
Taking d = 5 gives n = 27 i.e. v/27 = [5,5,10].

k| ak Pk Gk

0] 5 5 1
11 5 26 5
2|10 265 51
3| 5 1351 260

Using the identity p? — ng2 = (—1)**1Qy1, we get two solutions: = = 26,y = 5 and
z = 1351,y = 260.

4 marks

(ii) Draw the table:
k| B Qk T, ag
0 0 1 Jm  d—1
1|d—1 2d-2 d-Liym 1
2d-1 1 d—1++m 2d—2

Justification of ag, a1, a9 as follows.

ay = [/m]. But, for all d > 2, we have d —1 > 1 and so: (d—1)2 = d®> - 2d+1 =
d>—1-2(d—-1) <d®—-1< d? giving: d -1 < +vd?—1 < d, so that [\/m] = d — 1, i.e.
a():d—l.
_ [é=1+ym]| _ [d=14[vm]] _ 2d-2 _
w =[Syt = [ = dE -

2d—2 | — | 2d—2 | T 2d—2
az3=[d—1+y/m]l=d—1+4+[y/m]=(d—-1)+(d—1)=2d - 2.

The fact that Q2 = 1 signals recurrence, so that \/m = [d — 1,1, 2d — 2|, as required.
5 marks. Whole question similar to one in exercises.



