Time allowed: Two Hours and a Half (May 2004)

You may attempt as many problems as you like. The best FIVE answers will be taken into account. Each question carries the same weight.

1.

[20 marks]

(i) Find all zeros, poles and their orders of the meromorphic function

$$f(z) = \frac{(z^2 + 4)^2}{(z^2 + 1)^2 (z - 1)}$$

on the Riemann sphere $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. [10 marks]

(ii) Using the coordinate $\tau = \frac{1}{z}$ at ∞ , find the first three terms $c_0 + c_1 \tau + c_2 \tau^2$ of the power-series expansion of f(z) at ∞ . [5 marks]

(iii) Find the radius of convergence of the power series. [5 marks]

2.

[20 marks]

(i) Find the residues of the meromorphic differential

$$\omega = \frac{z^2 - 1}{z} dz$$

at its poles on the Riemann sphere $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. [12 marks]

(ii) Write down the sum of the residues. Is this predicted by the residue theorem? [2 marks]

(iii) Formulate the residue theorem for a compact Riemann surface. [3 marks]. Sketch a proof of the theorem. [3 marks]

3.

[20 marks] (i) Find all ramification points and their orders of the holomorphic map $f: \overline{\mathbb{C}} \to \mathbb{C}$ $\overline{\mathbb{C}}$ defined by the meromorphic function

$$f(z) = \frac{4z^2 + 1}{z^2 - 1}, \ z \in \mathbb{C}.$$

[12 marks].

Find the degree of the map. [4 marks]

(ii) Check the statement of the Riemann-Hurwitz Formula for the map $f: \overline{\mathbb{C}} \to$ $\overline{\mathbb{C}}$. [4 marks]

4. (i) Find the Riemann surface of the multi-valued holomorphic function

$$w = \sqrt{z+2} + \sqrt{z-2}, \quad z \in \mathbb{C}.$$

[15 marks]

(ii) Find the corresponding algebraic Riemann surface. [5 marks]

5.

[20 marks]

Consider the complex curve X which is the projective closure of the curve

$$y^2 + x^3 - 2x^2 + x = 0$$

in \mathbb{C}^2 .

(i) What are the singular points of X in \mathbb{C}^2 ? [5 marks]

- (ii) Find a rational parametrisation $\overline{\mathbb{C}} \to X$ by the Riemann sphere. [10 marks]
- (iii) What corresponds to $\infty \in \overline{\mathbb{C}}$ for your parametrisation? [5 marks]

Paper Code M340

[20 marks]

[20 marks]

Consider the elliptic curve X given by the equation

$$\eta_0 \eta_2^2 = 2\eta_1^3 - \eta_0^3$$

in projective coordinates $(\eta_0 : \eta_1 : \eta_2)$, or (equivalently) by the equation $y^2 = 2x^3 - 1$ in the affine coordinates $x = \frac{\eta_1}{\eta_0}, y = \frac{\eta_2}{\eta_0}$.

(i) Show that the meromorphic differential

$$\omega = \frac{dx}{y}$$

is holomorphic on X and has no zeros. [15 marks]

(ii) Give evidence why X is not isomorphic to the Riemann sphere $\overline{\mathbb{C}}$. [2 marks] Show that X is a torus. [3 marks]

7.

6.

[20 marks]

[20 marks]

(i) Formulate the Riemann-Roch Theorem for a compact Riemann surface of genus $g.\ [5 marks]$

Explain all items of the theorem. [5 marks]

(ii) Assume that R is a compact Riemann surface of the genus 5 and A_1 , A_2 , A_3 , A_4 , A_5 are 5 distinct points of R.

Using the Riemann-Roch Theorem, find the dimension of the space of meromorphic functions on R which have at A_1 , A_2 , A_3 , A_4 , A_5 poles of the orders not more than 2 and which are holomorphic in all other points of R. [4 marks]

Prove that there exists a meromorphic function f on R which at the points A_1 , A_2 , A_3 , A_4 , A_5 has poles of orders exactly 2, and f is holomorphic in all other points of R. [6 marks.]

8.

(i) What are canonical domains? [2 marks]

(ii) Explain their similarity and their difference. [5 marks]

(iii) Formulate the Riemann uniformisation theorem for Riemann surfaces. [4 marks]

(iv) Explain all items of the theorem. [5 marks]

(v) Give an example of the uniformisation of a Riemann surface which is different from the canonical domains. [4 marks]

Paper Code M340

Page 4 of 4 END