THE UNIVERSITY
of LIVERPOOL

Math 329 - January 2003 Exam

"Numerical Linear Algebra and its Applications"

Full marks will be awarded for complete answers to SIX questions. Only the best 6 answers will be taken into account. Note that each question carries a total of 15 marks that are distributed as stated.

THE UNIVERSITY
 of LIVERPOOL

1.

[15 marks]
(1) Using the matrix p-norm definition, prove that

$$
\left\|A_{1}+3 A_{2}-2 A_{3}\right\|_{p} \leq\left\|A_{1}\right\|_{p}+3\left\|A_{2}\right\|_{p}+2\left\|A_{3}\right\|_{p}
$$

where $A_{1}, A_{2}, A_{3} \in R^{n \times n}$.
[5 marks]
(2) Construct a non-trivial 3×3 matrix A (i.e. $a_{i j} \neq 0$ for all i, j) such that
[5 marks]

$$
\|A\|_{1}=10, \quad\|A\|_{\infty}=12
$$

(3) Given the eigenvalues of $A^{T} A-7 I$ as $\lambda\left(A^{T} A-7 I\right)=\left[\begin{array}{lll}2, & -3, & -2,\end{array}\right]$, find the minimum singular value $\sigma_{\min }(A)$ and 2-norm $\|A\|_{2}$ for some 4×4 matrix A.
[5 marks]
2.
[15 marks]
(1) Let $A \in R^{n \times n}$. To find $\lambda(A)$, the QR method implements (from $A_{0}=A$ and for $k=1,2,3, \ldots$)
[7 marks]

$$
\left\{\begin{array}{l}
A_{k-1}=Q_{k} R_{k} \\
A_{k}=R_{k} Q_{k}
\end{array}\right.
$$

After n steps of the QR method, work out the iteration matrix P_{n} such that $A_{n}=P_{n}^{T} A_{0} P_{n}$.
(2) For a matrix $A_{3 \times 3}$, assume that there exists an orthogonal matrix P such that

$$
P^{\top} A P=D=\left[\begin{array}{lll}
10 & & \\
& 2 & \\
& & 3
\end{array}\right] .
$$

Use the perturbation theorem to predict the locations of eigenvalues $\mu_{j}(B)$ of the following matrix (keep 2 decimal digits in answers)

$$
B=A+\delta A \quad \text { and } \quad \delta A=\left[\begin{array}{rrr}
0.1 & 0.1 & 0 \\
0 & 0.2 & 0.1 \\
0 & 0 & 0.3
\end{array}\right]
$$

Hint. $\lambda(\delta A)=\left[\begin{array}{lll}0.1 & 0.2 & 0.3\end{array}\right], \quad \lambda\left(\delta A^{T} \delta A\right)=\left[\begin{array}{lll}0.0074 & 0.0455 & 0.1071\end{array}\right]$.

THE UNIVERSITY
 of LIVERPOOL

3.

[15 marks]
(1) Explain how step k of the Gran-Schmidt method is proceeded.
[5 marks]
Hint: You may assume that the k th equation is

$$
a_{k}=q_{1} u_{1 k}+q_{2} u_{2 k}+\cdots+q_{k} u_{k k} .
$$

(2) For the 3×3 unsymmetric matrix,
[10 marks]

$$
A=\left(\begin{array}{rrr}
-149 & -50 & -154 \\
537 & 180 & 546 \\
-27 & -9 & -25
\end{array}\right)
$$

complete the last step of a QR factorization by the Gram-Schmidt method (write down Q and R) given that $u_{11}=557.9418, u_{12}=187.0321, u_{22}=0.0741$,

$$
q_{1}=\left(\begin{array}{r}
-0.2671 \\
0.9625 \\
-0.0484
\end{array}\right), q_{2}=\left(\begin{array}{r}
-0.7088 \\
-0.1621 \\
0.6865
\end{array}\right) .
$$

(Keep 4 decimal digits in answers).
4.
(1) Let $N=2^{t}$ for some positive integer t. Ignoring the full details of the permutation phase, what is the Cooley-Tukey Fast Fourier Transform (FFT) factoriasation for the Discrete Fourier Transform matrix A_{N} ? Further explain why $A_{N} x$, for $x \in C^{N}$, takes only $O(N \log N)$ operations by the FFT.
(2) Implement the permutation phase of the FFT by shuffling the following vector [5 marks]

$$
x=\left(\begin{array}{r}
2 \\
-3 \\
1 \\
99 \\
21 \\
33 \\
12 \\
18
\end{array}\right) .
$$

(3) Given the first row r and first column c of a Toeplitz matrix [5 marks]

$$
r=\left[\begin{array}{llll}
2 & 3 & 5 & 5
\end{array}\right], \quad c=\left[\begin{array}{llll}
2 & 8 & 3 & 7
\end{array}\right]^{T},
$$

what is the matrix T ? Construct a suitable circulant matrix that embeds T.

THE UNIVERSITY
 of LIVERPOOL

5.

[15 marks]
In the general n-dimensional case
(1) Write down the Givens matrix $P_{1,3}$ and verify that it is orthogonal.
(2) Show that the Householder matrix $P=P(v)=I-\frac{2}{v^{T} v} v v^{T}$ is both symmetric and orthogonal where $v \in R^{n}$ is nonzero.
[5 marks]
(3) Let $x \in R^{n}$ admit the partition

$$
x=\binom{\widetilde{x}}{\bar{x}}
$$

where $\tilde{x} \in R^{\ell}$ and $\bar{x} \in R^{n-\ell}$ for some integer $0 \leq \ell \leq n-1$. In each of the following two cases, without forming $P(v)$, find a suitable vector $v \in R^{n}$ and the scalar α such that

$$
P(v) x=\left(\begin{array}{c}
\widetilde{x} \\
-\alpha \\
\mathbf{0}
\end{array}\right)
$$

(3a) $n=5, \ell=2$ and $x=\left[\begin{array}{lllll}2009 & 2003 & 4 & -2 & -\sqrt{5}\end{array}\right]^{T}$. [2 marks]
(3b) $n=4, \ell=1$ and $x=\left[\begin{array}{llll}2004 & -2 & \sqrt{3} & 3 \sqrt{2}\end{array}\right]^{T}$
[3 marks]
Use exact arithmetic.
6.
(1) Find the companion matrix B for polynomial $P_{4}(x)=x^{4}+4 x^{3}-2 x^{2}-1$.
[3 marks]
(2) For the above matrix B, work out the graph $G\left(B^{T} B\right)$ and then compute one singular value. Use exact arithmetic.
[12 marks]

THE UNIVERSITY
 of LIVERPOOL

7.

[15 marks]
(1) Define the functional $\Phi(x)=\frac{1}{2} x^{T} A^{T} A x-x^{T} A^{T} b$ for vectors $x, b \in R^{n}$ and matrix $A \in R^{n \times n}$. Prove that [5 marks]

$$
\Phi(x)=\frac{1}{2}\|A x-b\|_{2}^{2}-\frac{1}{2} b^{T} b .
$$

Further show that if A is orthogonal, the solution to the minimisation problem

$$
\min _{x} \Phi(x)
$$

is $x=A^{T} b$.
[5 marks]
Hint. You may assume that for any $x, c \in R^{n}$ and matrix $B \in R^{n \times n}$,

$$
\nabla\left(x^{T} B x\right)=2 B x, \quad \nabla\left(x^{T} c\right)=c .
$$

(2) Based on a symmetric positive definite matrix A, what is meant by vectors p, q being A-conjugate? At the start of step k of a conjugate gradient method, given that the present residual r_{k-1} and the previous search direction p_{k-1} are respectively

$$
r_{k-1}=\left(\begin{array}{r}
-24.2182 \\
-10.3568 \\
-0.2858 \\
8.3649
\end{array}\right), p_{k-1}=\left(\begin{array}{r}
28.1667 \\
77.0500 \\
128.6000 \\
181.3405
\end{array}\right), \quad \text { and } \quad \frac{\left(p_{k-1}^{T} A r_{k-1}\right)}{\left(p_{k-1}^{T} A p_{k-1}\right)}=0.0136
$$

construct the new search direction p_{k} that is A-conjugate to p_{k-1}. (Keep 4 decimal digits in answers)

THE UNIVERSITY of LIVERPOOL

8.

[15 marks]
Consider the numerical solution of the linear differential equation on the unit square Ω centred at $(1 / 2,1 / 2), \quad 4 \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}-\frac{\partial u}{\partial y}+16 u=\cos (x y), \quad$ with $u=1$ at the boundary Γ. Using the finite difference method (i.e. the usual central differences) with 9 internal points (equally spaced), ordered lexicographically as in Fig.1,
(1) Verify that the (node 9) equation at point $\left(x_{3}, y_{3}\right)=(3 / 4,3 / 4)$ is

$$
9 u_{6}+32 u_{8}-72 u_{9}=\frac{1}{2} \cos \left(\frac{9}{16}\right)-39 .
$$

(2) Verify that the (node 5) equation at point $\left(x_{2}, y_{2}\right)=(1 / 2,1 / 2)$ is
[5 marks]

$$
9 u_{2}+32 u_{4}-72 u_{5}+32 u_{6}+7 u_{8}=\frac{1}{2} \cos \left(\frac{1}{4}\right) .
$$

(3) Find a spiral ordering $r=\left[r_{1}, r_{2}, \cdots, r_{9}\right]$ in terms of the old orderings r_{j} (do not work out any matrix!).
[5 marks]

Figure 1: Lexicographical ordering of a FDM mesh

