MATH328 June 2006

In this paper bold-face quantities like \mathbf{x} represent three-dimensional vectors. Full marks can be obtained for complete answers to FIVE questions. Only the best FIVE answers will be counted.

1. (a) Consider the infinitesimal line element,

$$ds^{2} = g_{\mu\nu} dx^{\mu} dx^{\nu} = dt^{2} - dx^{2}.$$

Write the metric $g^{\mu\nu}$ in an explicit matrix form. Write $g_{\mu\nu}$ in matrix form. Find the set of independent transformations of the form

$$t \to t + \epsilon A(t, x)$$

 $x \to x + \epsilon B(t, x)$,

where ϵ is an infinitesimal constant and the functions A and B have to be determined, that leave ds^2 invariant. State what each transformation represents in space time. [10 marks]

(b) Consider the Poincare group in 1+2 dimensions, with the infinitesimal line element

$$ds^2 = dt^2 - dx^2 - dy^2.$$

The Pauli-Lubanski vector in four dimensions is given by

$$W^{\mu} = -\frac{1}{2} \epsilon^{\mu\nu\sigma\rho} J_{\nu\sigma} P_{\rho},$$

where $K_i = J_{i0}$ and $J_i = 1/2\epsilon_{ijk}J_{ij}$ are the generators of boosts and rotations, respectively, and P_{ρ} is the momentum four vector. Write down the four components of the Pauli-Lubanski vector in the case of the 3 dimensional line element given above, for massless and massive particle states. [10 marks]

2. Suppose that we live on a two dimensional surface with a line element on it given by

$$ds^2 = d\theta^2 + \sin^2\theta d\phi^2$$

(a convenient notation is $\theta^{\mu} \equiv (\theta, \phi) \ (\mu = 1, 2)$)

Write the metric $g^{\mu\nu}$ in an explicit matrix form. Write $g_{\mu\nu}$ in matrix form.

Find the set of infinitesimal transformations of the form

$$\theta^{\mu} \to \theta^{\mu} + \epsilon \zeta^{\mu}(\theta, \phi)$$

for which the line element ds^2 is invariant.

[20 marks]

3. (a) Let \vec{J} and \vec{K} be the generators of rotations and boosts, respectively. Show that

$$\vec{J}^2 - \vec{K}^2$$
 and $\vec{J} \cdot \vec{K}$

are Lorentz invariants (i.e. that they commute with all the generators of the Lorentz group). [10 marks]

- (b) Assume a representation (j_1, j_2) of $SU(2) \times SU(2)^{\dagger}$. How many states are there in this representation? How does this representation decompose in irreducible representations of $SU(2)_J$, where J is the total angular momentum? [10 marks]
- 4. Write down the Lagrangian for a particle of mass m in a potential $V(r, \phi)$ when referred to planar polar coordinates (r, ϕ) . Hence show that the equations of motion are

$$egin{aligned} m\ddot{r}-mr\dot{\phi}^2&=-rac{\partial V}{\partial r},\ mr\ddot{\phi}+2m\dot{r}\dot{\phi}&=-rac{1}{r}rac{\partial V}{\partial \phi}. \end{aligned}$$

Derive the principle of conservation of angular momentum in the plane for an axisymmetric potential, and obtain the usual formula v^2/r for centripetal acceleration ($\dot{r}=0$ and v is the particle's speed). [20 marks]

- 5. (a) Show that if the Hamiltonian is independent of a generalized coordinate q_0 , then the conjugate momentum p_0 is a constant of the motion. Such coordinates are called **cyclic coordinates**. Give two examples of a physical system that has a cyclic coordinate. [5 marks]
- (b) Show that in 3 dimensional spherical polar coordinates the Hamiltonian of a particle of mass m moving in a potential $V(\vec{x})$ is

$$H = \frac{1}{2m} (p_r^2 + \frac{p_\theta^2}{r^2} + \frac{p_\phi^2}{r^2 \sin^2 \theta}) + V(\vec{x}).$$

Show that $p_{\phi}=$ constant when $\partial V/\partial \phi \equiv 0$ and interpret this result physically. [15 marks]

6. (i) The Lagrangian density for a real scalar field is given by

$$\mathcal{L}_0 = \frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m^2 \phi^2$$

Show that the Hamiltonian H_0 is given by

$$H_0 = \frac{1}{2} \int [\dot{\phi}^2 + (\nabla \phi)^2 + m^2 \phi^2] d^3 x.$$

[5 marks]

(ii) Show that if we take the usual canonical commutation relations,

$$\begin{aligned} &[\phi(\mathbf{x},t),\pi(\mathbf{x}',t)] = i\hbar\delta(\mathbf{x} - \mathbf{x}'), \\ &[\phi(\mathbf{x},t),\phi(\mathbf{x}',t)] = 0, \\ &[\pi(\mathbf{x},t),\pi(\mathbf{x}',t)] = 0, \end{aligned}$$

the equations of motion are obtained from

$$i\hbar\dot{\phi}=[\phi,H_0]$$
 and $i\hbar\dot{\pi}=[\pi,H_0]$.

[15 marks]

7. (a) Defining $\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3$, show that

$$(\gamma^5)^2 = 1$$
$$\gamma^{5\dagger} = \gamma^5.$$

[12 marks]

- (b) Write each of $\gamma^1\gamma^2\gamma^3$ and $\gamma^0\gamma^2\gamma^3$ as a product $c\gamma^5\gamma^{\nu}$ for some $\nu=0,1,2,3$ and some number c. [5 marks]
 - (c) Show that

$$\operatorname{trace}(\gamma_{\mu}\gamma_{\nu}) = 4\eta_{\mu\nu}.$$

[You may assume $\gamma^{\mu\dagger} = \gamma^0 \gamma^\mu \gamma^0$.]

[3 marks]

8. (a) Let A_{μ} be the electromagnetic vector potential. The electromagnetic field strength tensor is defined as

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}.$$

Show that Maxwell's equation in four vector notation can be derived from the electromagnetic Lagrangian given by

$$L_{e.m.} = -\frac{1}{4} F_{\alpha\beta} F^{\alpha\beta}.$$

Show that $L_{e.m.}$ is invariant under the transformation $A_{\mu} \to A_{\mu} - \partial_{\mu} \Lambda$, where Λ is a scalar function. [10 marks]

(b) Show that imposing a local U(1) symmetry forbids the photon from attaining a mass. [10 marks]