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2MA67 (=M327)

Instructions to candidates

Full marks can be obtained for complete answers to FIVE questions. Only the
best SIX answers will be taken into account.



1. A discrete time Markovian process involving a discrete stochastic variable
is described by a Markov chain

State
(i) a property of the stochastic matrix Q which applies to each of its elements
(ii) a property of Q which applies to each of its columns

(iii) the largest eigenvalue of Q and its corresponding left eigenvalue.

On any one day, each vehicle of a car rental company can be thought of
as being in one of three states: (1) ready and waiting for hire (2) out on hire
or (3) in repair/preparation for rehire. The probability (per day) that a car be
hired is %; that a car on hire be returned is %; and that a returned car be made
ready for rehire is %. Show how the system can be described by a Markov chain
with stochastic matrix

Q=
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where the possible states are ordered as above. Comment very briefly on sim-
plifying assumptions which are being made and on real effects which are being
ignored.

Find the eigenvalues and right eigenvectors of Q.

The company opens for business with a large fleet of cars all ready for
hire and operates as described above for a large number of days. Find the
equilibrium percentages of cars in the 3 categories: awaiting hire, out on hire
and being prepared.



2. The master equation for a Markovian stochastic process can be written

88—1;(:3, t) =Y [P, )W(z' — z,t) — P(z,t)W(z — ', 1)].

Describe briefly the significance of the quantities P(x,t) and W (z — z’,1).

Frustrated workers attending to a sequence of tasks are sometimes heard
to say “It’s a case of one step forwards and two steps back!”. Consider a model
of such progress in which the steps are labelled by z, an integer, and where the
forward steps * — x + 1 are made with probability rate a and the backwards
steps £ — = — 2 with rate Aa where a and )\ are positive constants.

Write down a master equation for this stochastic process.

Evaluate z(t) and z2(t) given that the process starts at step 0 at time
t=0.

Find the value of X\ for which, on average, no progress is made and in this
case find the root mean square (RMS) deviation from the starting point after
time ¢.

In a model of progress in which A = 1, find the average rate of progress
and the corresponding RMS deviation.

Describe, with the aid of a sketch, the evolution with time of the distribu-
tion in x for the model with arbitrary A.

3. The quantity H is defined for a Markov process as

H(t) = Y P(a, ) ln %)

(
Pe(z) ’
where P,.(z) is the equilibrium probability distribution. State, without proof,
the ‘H Theorem’.

A Markov process has two possible states 1 and 2 with transition rates
given by
Wl—=2)=X and W2 —>1)=uypu,

where A and p are positive constants. Write down the corresponding master

equation.
Initially, the probability that £ = 1 is a. Show that

1
P(1,t) = E(M_ fe=ty,
where f and b are constants which you should determine.

Use this result to verify that the H Theorem is valid for this process by
evaluating dH/dt.

If a=1 and XA = £, show that, at ¢t =0, H= —£n2.



4. The real variable y satisfies the ordinary differential equation

dy y
P
whereas the stochastic variable x satisfies the stochastic differential equation
dx x
— = —— 4 A(t
dt t + A1)

where a is a positive constant and the stochastic quantity A(t) satisfies
At) =a, and AQR)AW)=a®+ad(t—1t').
Use an integrating factor technique or other means to find the solution for
y(t) satisfying y(1) = 0.
Show that the solution for z(t) satisfying z(1) = 0 is such that
o

t)y=—(t" -1
2(0) = 5 (1 — 1)
and find a corresponding expression for

o*(t) = 220) - ()

2

Verify that, for large ¢,

t))ot~ =
z(t)/o" ~ 5

Give one example of a simple physical system which can be described by
a stochastic differential equation. You should give and describe the relevant
equation but need not solve it.



5. A system consists of a large number N of distinguishable weakly inter-
acting particles and has total energy U. If each particle has allowed energies ¢;
(j =1,2... M), derive the probability that a particle is in a particular one of
these energy levels.

[You may use the result that log N! ~ Nlog N — N for large N ]

Write down the constraint equations for the total energy and number of
particles for two such systems in thermal equilibrium. Use these constraints
to derive the Boltzmann distribution for the energy of a particle in the above
system of N particles when they are in thermal equilibrium at temperature 7.

Show that the average energy of any particle in this system is given by

0
€e=—InZ
op
where Z is the partition function, which you should define, and g is a function
of temperature and Boltzmann’s constant k.

Consider such a system with three allowed energy levels given by ¢; = 0, +e.
Evaluate Z, and the average energy per particle €.

Give the high and low temperature limits of the average particle energy for
this three level system.



6. An Ising model with 4 sites has energy

E({s}) = Z T SmSm+1

where m +4 =m, s, = =1 and the bond strength J,,, satisfies
I = J ifm #4,
™o —J ifm=4,
where J is a positive constant.

Show that in a thermal equilibrium at temperature 7', the partition func-
tion Z is given by
16 cosh(2J/kT) .

Find the average energy E and the probability that the system is in the
state (+1,+1,+1,+1).
Identify the ground state (or states).

Make a rough sketch of the average energy as a function of 1/7, indicating

the high and low temperature limits.
Show that at high temperatures
—  4J?
Er———0.
kT

7. Specify mathematically the Hopfield model of a neural network and de-
scribe briefly how it may be used to model the mechanisms of learning and of
memory retrieval.

State the relationship of this model to a statistical mechanics system with

energy given by
E({s}) = Z Jij 885
i#]
in equilibrium at temperature 7'.

Consider a Hopfield model with 5 neurons which has been trained using
the Hebb rule with one pattern £ = (+1,+1,+1,—1,—1). If the network is
initially in the state s = (+1,+1,—1,—1,—1), discuss the probability for the
next state of the network.



