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INSTRUCTIONS TO CANDIDATES

Full marks can be obtained for complete answers to FIVE questions. Only the
best FIVE answers will be counted.

The following results may be used freely as required

Γµ
αβ =

1

2
gµν(gνα,β + gνβ,α − gαβ,ν),

Rµ
νσρ = Γµ

νρ,σ − Γµ
νσ,ρ + Γµ

ασΓα
νρ − Γµ

αρΓ
α
νσ,

Rµν = Rσ
µσν ,

Gµν = Rµν −
1

2
gµνR,

c = 2.998 × 108 ms−1.
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1. State one of Einstein’s principles of special relativity.

The Lorentz transformation between inertial frames S and S
′

, where S
′

is
moving at constant velocity v along the x-axis of S, is

t′ = γ(v)
(

t −
v

c2
x
)

, x′ = γ(v)(x − vt) .

If S
′′

is another inertial frame moving relative to S
′

at constant velocity u
along the x′-axis, determine the velocity at which S

′′

travels relative to S.

Using the Lorentz transformation show that

t′ −
x′

c
= k(v)

(

t −
x

c

)

,

where

k(v) =
(

c + v

c − v

)1/2

.

Show also that

t′ +
x′

c
=

1

k(v)

(

t +
x

c

)

.

Compute (t′ 2 − x′ 2/c2) in terms of (t2 − x2/c2). What does this imply
about (t2 − x2/c2)?

A particle is at rest at the origin O. At time t = 0 it decays into two
identical particles which travel in opposite directions along the x-axis with
speed 2c/3 relative to O. What is the speed of one particle relative to the
other? If one of the particles sends a light signal with frequency 1000Hz,
what is the frequency of the signal received by the other particle?

[20 marks]
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2. Define the momentarily comoving reference frame (MCRF).

A particle is moving with velocity u = (ux, uy, uz) with respect to an ob-
server in an inertial frame S. According to an observer in an inertial frame
S

′

, moving at constant relative velocity v in the positive x direction relative
to S, the velocity of the same particle is u

′ = (u′

x, u
′

y, u
′

z) where

u′

x =
ux − v

1 − uxv
c2

, u′

y =
uy

γ (v)
(

1 − uxv
c2

) .

Given that the Lorentz transformation between the coordinates is

t′ = γ (v)
(

t −
vx

c2

)

, x′ = γ(v) (x − vt) ,

show that the x and y components of the particle’s acceleration a = du/dt
and a

′ = du′/dt′ according to the respective observers are related by

a′

x =
ax

γ3 (v)
(

1 − uxv
c2

)3

and

a′

y =
1

γ2 (v)
(

1 − uxv
c2

)2



ay +
vuyax

c2
(

1 − uxv
c2

)



 .

If S
′

corresponds to the MCRF of the particle, show that ax = a′

x/γ
3(v)

and ay = a′

y/γ
2(v).

Observer A is in a rocket whose engine produces a steady acceleration of
10ms−2 in the positive x direction as recorded by A. A second observer
B in an inertial frame observes A passing in the positive x direction with
zero velocity in the y direction and records a change in A’s velocity v in
the positive x direction by ∆v = 0.02ms−1 over a time interval ∆t = 0.01s.
Estimate the velocity v of A relative to B at this time.

[20 marks]
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3. A particle of rest mass 5m is stationary at the origin and is struck by a pho-
ton of energy E travelling in the positive x direction to produce two identical
particles of rest mass 3m. They move off at the same speed and with total
angle φ between them (where φ = 0 corresponds to both particles moving
in the positive x direction). Using conservation of energy-momentum, show
that

cos φ =
2E2

(E − mc2) (E + 11mc2)
− 1 .

Sketch cos2 θ as a function of E for E > mc2, where θ = φ/2. What is the
minimum value of E for which the process can occur? Show that φ must
be less than 112.9o. To what energy E does this value of φ correspond?

[20 marks]
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4. Consider Cartesian coordinates xµ = (x, y) and plane polar coordinates
xµ′

= (r, θ) where x = r cos θ and y = r sin θ. Compute the inverse
transformation matrix

(Λµ
µ′) =

∂xµ

∂xµ′
≡ Λ−1

as a function of r and θ and show that Λ =
(

Λµ′

µ

)

is

(

cos θ sin θ
−1

r
sin θ 1

r
cos θ

)

≡ Λ .

Let V µ, T µ
ν be respectively rank 1 and rank 2 tensors. Write down the

transformation rule for each tensor between coordinate systems xµ and xµ′

and the definition of their covariant derivatives with respect to xσ.

A vector V µ has Cartesian components given by

V µ =

(

x − y
x + y

)

.

Compute T µ
ν = V µ

,ν and show that

(

ΛTΛ−1
)µ′

ν′ ≡ Λµ′

µT
µ
νΛ

ν
ν′ =

(

1 −r
1

r
1

)

.

Using the vector transformation rule show that the components of V µ′

in
the primed coordinate system as a function of r and θ are given by

V µ′

=

(

r
1

)

and hence determine V µ′

,ν′.

Compute V µ′

;ν′ explicitly. Comment on its relation, if any, to the value of
(ΛTΛ−1) calculated above.

[You may use the fact that the only non-zero Christoffel symbols for plane
polar coordinates are Γr

θθ = −r and Γθ
θr = Γθ

rθ = 1

r
.]

[20 marks]
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5. Consider a two-dimensional surface with line element given by

ds2 = dθ2 + cosec2θdφ2 .

Write down gµν and deduce its inverse gµν . Compute the Christoffel symbols
Γµ

νσ and show that the only non-zero components are given by

Γφ
θφ = Γφ

φθ = − cot θ , Γθ
φφ = cosec2θ cot θ .

Using these expressions show that the value of the independent component
of the Riemann tensor is given by Rθ

φθφ = −(2 cot2 θ + 1)cosec2θ.

From the symmetry properties of the Riemann tensor deduce the value of
Rφ

θφθ. Compute the Ricci tensor Rµν and the Ricci scalar R. With these
quantities show that the Einstein tensor vanishes.

[20 marks]

6. If Uα is a tangent vector to a curve, write down the condition for the curve
to be a geodesic in terms of the covariant derivative of Uα.

Show that if a particle moves along a geodesic in a spacetime with metric
gµν which does not depend on the coordinate xσ, then the particle has a
constant momentum pσ.

The metric for a Schwarzschild spacetime is given by

ds2 =
(

1 −
2M

r

)

dt2 −
(

1 −
2M

r

)−1

dr2 − r2dθ2 − r2 sin2 θdφ2 ,

where c = 1 and M is mass of the gravitational source. A particle of mass
m moves in this spacetime along a worldline in the plane θ = π/2. Deduce
that pt and pφ are constants.

If pt = mẼ, pθ = 0 and pφ = −mL̃, where Ẽ and L̃ are constants, show
that

(

dr

dτ

)2

= Ẽ2 −

(

1 +
L̃2

r2

)

(

1 −
2M

r

)

≡ Ẽ2 − Ṽ 2(r) ,

where τ is the proper time.

In the case where L̃2 = 16M2, sketch the function Ṽ 2(r) in the region
r > 2M , including the radius and nature of all turning points, zeros and
asymptotes. What is the upper limit on the value of Ẽ for a particle to be
in an ellipitical orbit? What is the corresponding lower limit on its radius?

[20 marks]
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7. Consider a photon moving in the equatorial plane of the Schwarzschild
spacetime whose coordinates are xµ = (t, r, θ, φ) where c = 1. The trajec-
tory is governed by

(

dr

dλ

)2

= E2 − V 2(r)

and dφ/dλ = L/r2, where M is the mass of the gravitational source, λ
parameterises the worldline of the photon and

V 2(r) =
L2

r2

(

1 −
2M

r

)

.

Plot V 2(r) in the region r > 2M , clearly labelling all stationary points
and showing the asymptotic behaviour. Describe the nature of the three
possible trajectories.

For M 6= 0 and Mu � 1, show that φ satisfies

dφ

dy
= (1 + 2My)

(

1

b2
− y2

)−1/2

where b = L/E, u = 1/r, y = u(1 − Mu) and all terms of order y3 and
higher are neglected relative to y2.

Show, by differentiating the right side of

φ = φo + sin−1(by) +
2M

b
− 2M

(

1

b2
− y2

)1/2

,

where φo is a constant, that it satisfies the differential equation for φ(y).
Using this solution, show that light is deflected by the gravitational source
through an angle ∆φ = 4M/b.

[20 marks]
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