THE UNIVERSITY of LIVERPOOL

SUMMER 2003 EXAMINATIONS

Bachelor of Science: Year 3
Master of Mathematics: Year 3
Master of Mathematics: Year 4
Master of Physics : Year 4

RELATIVITY

TIME ALLOWED : Two Hours and a Half

INSTRUCTIONS TO CANDIDATES

Full marks can be obtained for complete answers to FIVE questions. Only the best FIVE answers will be counted.

The following results may be used freely as required

$$
\begin{gathered}
\Gamma_{\alpha \beta}^{\mu}=\frac{1}{2} g^{\mu \nu}\left(g_{\nu \alpha, \beta}+g_{\nu \beta, \alpha}-g_{\alpha \beta, \nu}\right), \\
R_{\nu \sigma \rho}^{\mu}=\Gamma_{\nu \rho, \sigma}^{\mu}-\Gamma_{\nu \sigma, \rho}^{\mu}+\Gamma_{\alpha \sigma}^{\mu} \Gamma_{\nu \rho}^{\alpha}-\Gamma_{\alpha \rho}^{\mu} \Gamma_{\nu \sigma}^{\alpha}, \\
R_{\mu \nu}=R_{\mu \sigma \nu}^{\sigma}, \\
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R, \\
c=2.998 \times 10^{8} \mathrm{~ms}^{-1} .
\end{gathered}
$$

THE UNIVERSITY of LIVERPOOL

1. State one of Einstein's principles of special relativity.

The Lorentz transformation between inertial frames S and S^{\prime}, where S^{\prime} is moving at constant velocity v along the x-axis of S, is

$$
t^{\prime}=\gamma(v)\left(t-\frac{v}{c^{2}} x\right), \quad x^{\prime}=\gamma(v)(x-v t) .
$$

If $S^{\prime \prime}$ is another inertial frame moving relative to S^{\prime} at constant velocity u along the x^{\prime}-axis, determine the velocity at which $S^{\prime \prime}$ travels relative to S.
Using the Lorentz transformation show that

$$
t^{\prime}-\frac{x^{\prime}}{c}=k(v)\left(t-\frac{x}{c}\right),
$$

where

$$
k(v)=\left(\frac{c+v}{c-v}\right)^{1 / 2}
$$

Show also that

$$
t^{\prime}+\frac{x^{\prime}}{c}=\frac{1}{k(v)}\left(t+\frac{x}{c}\right) .
$$

Compute $\left(t^{\prime 2}-x^{\prime 2} / c^{2}\right)$ in terms of $\left(t^{2}-x^{2} / c^{2}\right)$. What does this imply about $\left(t^{2}-x^{2} / c^{2}\right)$?
A particle is at rest at the origin O. At time $t=0$ it decays into two identical particles which travel in opposite directions along the x-axis with speed $2 \mathrm{c} / 3$ relative to O. What is the speed of one particle relative to the other? If one of the particles sends a light signal with frequency 1000 Hz , what is the frequency of the signal received by the other particle?
[20 marks]

THE UNIVERSITY of LIVERPOOL

2. Define the momentarily comoving reference frame (MCRF).

A particle is moving with velocity $\mathbf{u}=\left(u_{x}, u_{y}, u_{z}\right)$ with respect to an observer in an inertial frame S. According to an observer in an inertial frame S^{\prime}, moving at constant relative velocity v in the positive x direction relative to S, the velocity of the same particle is $\mathbf{u}^{\prime}=\left(u_{x}^{\prime}, u_{y}^{\prime}, u_{z}^{\prime}\right)$ where

$$
u_{x}^{\prime}=\frac{u_{x}-v}{1-\frac{u_{x} v}{c^{2}}}, \quad u_{y}^{\prime}=\frac{u_{y}}{\gamma(v)\left(1-\frac{u_{x} v}{c^{2}}\right)} .
$$

Given that the Lorentz transformation between the coordinates is

$$
t^{\prime}=\gamma(v)\left(t-\frac{v x}{c^{2}}\right), \quad x^{\prime}=\gamma(v)(x-v t)
$$

show that the x and y components of the particle's acceleration $\mathbf{a}=d \mathbf{u} / d t$ and $\mathbf{a}^{\prime}=d \mathbf{u}^{\prime} / d t^{\prime}$ according to the respective observers are related by

$$
a_{x}^{\prime}=\frac{a_{x}}{\gamma^{3}(v)\left(1-\frac{u_{x} v}{c^{2}}\right)^{3}}
$$

and

$$
a_{y}^{\prime}=\frac{1}{\gamma^{2}(v)\left(1-\frac{u_{x} v}{c^{2}}\right)^{2}}\left(a_{y}+\frac{v u_{y} a_{x}}{c^{2}\left(1-\frac{u_{x} v}{c^{2}}\right)}\right) .
$$

If S^{\prime} corresponds to the MCRF of the particle, show that $a_{x}=a_{x}^{\prime} / \gamma^{3}(v)$ and $a_{y}=a_{y}^{\prime} / \gamma^{2}(v)$.
Observer A is in a rocket whose engine produces a steady acceleration of $10 \mathrm{~ms}^{-2}$ in the positive x direction as recorded by A. A second observer B in an inertial frame observes A passing in the positive x direction with zero velocity in the y direction and records a change in A 's velocity v in the positive x direction by $\Delta v=0.02 \mathrm{~ms}^{-1}$ over a time interval $\Delta t=0.01 \mathrm{~s}$. Estimate the velocity v of A relative to B at this time.
[20 marks]

THE UNIVERSITY of LIVERPOOL

3. A particle of rest mass 5 m is stationary at the origin and is struck by a photon of energy E travelling in the positive x direction to produce two identical particles of rest mass 3 m . They move off at the same speed and with total angle ϕ between them (where $\phi=0$ corresponds to both particles moving in the positive x direction). Using conservation of energy-momentum, show that

$$
\cos \phi=\frac{2 E^{2}}{\left(E-m c^{2}\right)\left(E+11 m c^{2}\right)}-1
$$

Sketch $\cos ^{2} \theta$ as a function of E for $E>m c^{2}$, where $\theta=\phi / 2$. What is the minimum value of E for which the process can occur? Show that ϕ must be less than 112.9°. To what energy E does this value of ϕ correspond?
[20 marks]

THE UNIVERSITY of LIVERPOOL

4. Consider Cartesian coordinates $x^{\mu}=(x, y)$ and plane polar coordinates $x^{\mu^{\prime}}=(r, \theta)$ where $x=r \cos \theta$ and $y=r \sin \theta$. Compute the inverse transformation matrix

$$
\left(\Lambda_{\mu^{\prime}}^{\mu}\right)=\frac{\partial x^{\mu}}{\partial x^{\mu^{\prime}}} \equiv \Lambda^{-1}
$$

as a function of r and θ and show that $\Lambda=\left(\Lambda^{\mu^{\prime}}{ }_{\mu}\right)$ is

$$
\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\frac{1}{r} \sin \theta & \frac{1}{r} \cos \theta
\end{array}\right) \equiv \Lambda
$$

Let $V^{\mu}, T^{\mu}{ }_{\nu}$ be respectively rank 1 and rank 2 tensors. Write down the transformation rule for each tensor between coordinate systems x^{μ} and $x^{\mu^{\prime}}$ and the definition of their covariant derivatives with respect to x^{σ}.
A vector V^{μ} has Cartesian components given by

$$
V^{\mu}=\binom{x-y}{x+y} .
$$

Compute $T^{\mu}{ }_{\nu}=V^{\mu}{ }_{, \nu}$ and show that

$$
\left(\Lambda T \Lambda^{-1}\right)^{\mu^{\prime}}{ }_{\nu^{\prime}} \equiv \Lambda^{\mu^{\prime}}{ }_{\mu} T_{\nu}^{\mu} \Lambda_{\nu^{\prime}}^{\nu}=\left(\begin{array}{cc}
1 & -r \\
\frac{1}{r} & 1
\end{array}\right)
$$

Using the vector transformation rule show that the components of $V^{\mu^{\prime}}$ in the primed coordinate system as a function of r and θ are given by

$$
V^{\mu^{\prime}}=\binom{r}{1}
$$

and hence determine $V^{\mu^{\prime}}{ }_{, \nu^{\prime}}$.
Compute $V^{\mu^{\prime}}{ }_{; \nu^{\prime}}$ explicitly. Comment on its relation, if any, to the value of $\left(\Lambda T \Lambda^{-1}\right)$ calculated above.
[You may use the fact that the only non-zero Christoffel symbols for plane polar coordinates are $\Gamma_{\theta \theta}^{r}=-r$ and $\Gamma_{\theta r}^{\theta}=\Gamma_{r \theta}^{\theta}=\frac{1}{r}$.]
[20 marks]

THE UNIVERSITY of Liverpool

5. Consider a two-dimensional surface with line element given by

$$
d s^{2}=d \theta^{2}+\operatorname{cosec}^{2} \theta d \phi^{2} .
$$

Write down $g_{\mu \nu}$ and deduce its inverse $g^{\mu \nu}$. Compute the Christoffel symbols $\Gamma_{\nu \sigma}^{\mu}$ and show that the only non-zero components are given by

$$
\Gamma_{\theta \phi}^{\phi}=\Gamma_{\phi \theta}^{\phi}=-\cot \theta \quad, \quad \Gamma_{\phi \phi}^{\theta}=\operatorname{cosec}^{2} \theta \cot \theta .
$$

Using these expressions show that the value of the independent component of the Riemann tensor is given by $R_{\phi \theta \phi}^{\theta}=-\left(2 \cot ^{2} \theta+1\right) \operatorname{cosec}^{2} \theta$.
From the symmetry properties of the Riemann tensor deduce the value of $R^{\phi}{ }_{\theta \phi \theta}$. Compute the Ricci tensor $R_{\mu \nu}$ and the Ricci scalar R. With these quantities show that the Einstein tensor vanishes.
[20 marks]
6. If U^{α} is a tangent vector to a curve, write down the condition for the curve to be a geodesic in terms of the covariant derivative of U^{α}.

Show that if a particle moves along a geodesic in a spacetime with metric $g_{\mu \nu}$ which does not depend on the coordinate x^{σ}, then the particle has a constant momentum p_{σ}.
The metric for a Schwarzschild spacetime is given by

$$
d s^{2}=\left(1-\frac{2 M}{r}\right) d t^{2}-\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}-r^{2} d \theta^{2}-r^{2} \sin ^{2} \theta d \phi^{2}
$$

where $c=1$ and M is mass of the gravitational source. A particle of mass m moves in this spacetime along a worldline in the plane $\theta=\pi / 2$. Deduce that p_{t} and p_{ϕ} are constants.
If $p_{t}=m \tilde{E}, p_{\theta}=0$ and $p_{\phi}=-m \tilde{L}$, where \tilde{E} and \tilde{L} are constants, show that

$$
\left(\frac{d r}{d \tau}\right)^{2}=\tilde{E}^{2}-\left(1+\frac{\tilde{L}^{2}}{r^{2}}\right)\left(1-\frac{2 M}{r}\right) \equiv \tilde{E}^{2}-\tilde{V}^{2}(r)
$$

where τ is the proper time.
In the case where $\tilde{L}^{2}=16 M^{2}$, sketch the function $\tilde{V}^{2}(r)$ in the region $r>2 M$, including the radius and nature of all turning points, zeros and asymptotes. What is the upper limit on the value of \tilde{E} for a particle to be in an ellipitical orbit? What is the corresponding lower limit on its radius?
[20 marks]

THE UNIVERSITY of LIVERPOOL

7. Consider a photon moving in the equatorial plane of the Schwarzschild spacetime whose coordinates are $x^{\mu}=(t, r, \theta, \phi)$ where $c=1$. The trajectory is governed by

$$
\left(\frac{d r}{d \lambda}\right)^{2}=E^{2}-V^{2}(r)
$$

and $d \phi / d \lambda=L / r^{2}$, where M is the mass of the gravitational source, λ parameterises the worldline of the photon and

$$
V^{2}(r)=\frac{L^{2}}{r^{2}}\left(1-\frac{2 M}{r}\right) .
$$

Plot $V^{2}(r)$ in the region $r>2 M$, clearly labelling all stationary points and showing the asymptotic behaviour. Describe the nature of the three possible trajectories.

For $M \neq 0$ and $M u \ll 1$, show that ϕ satisfies

$$
\frac{d \phi}{d y}=(1+2 M y)\left(\frac{1}{b^{2}}-y^{2}\right)^{-1 / 2}
$$

where $b=L / E, u=1 / r, y=u(1-M u)$ and all terms of order y^{3} and higher are neglected relative to y^{2}.
Show, by differentiating the right side of

$$
\phi=\phi_{o}+\sin ^{-1}(b y)+\frac{2 M}{b}-2 M\left(\frac{1}{b^{2}}-y^{2}\right)^{1 / 2}
$$

where ϕ_{o} is a constant, that it satisfies the differential equation for $\phi(y)$. Using this solution, show that light is deflected by the gravitational source through an angle $\Delta \phi=4 M / b$.
[20 marks]

