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1. (i) A three-state system has the Hamiltonian

(U 0 0
A=|0 2U ia
0 —ia 2U

where U and a are real constants. Check that the state

0
$)=n|1

1

is an eigenstate of H. What is its eigenvalue? Determine the
normalisation constant n, which you should choose to be real and
positive.

An observable @ is represented by the matrix

~

y

1
Q= 1
0

—_
O O =

What is the average value which will be found for @ if it is mea-
sured for a system in the state [¢)?

(ii) A particle at some moment in time is described by the wave func-
tion
_ ] Ala—lz)) : fz]<a
(o) = { 0 : otherwise,

where A and a are real positive constants. Find the normalisation
constant A in terms of a.

Find the expectation values (p) and (p?) with respect to the given
wave function.

Deduce that the uncertainty Ap in a measurement of the momen-
tum of the particle is given by

[20 marks]
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2. A particle of mass m is confined to the region 0 < z < L of the z-axis.
Inside this region the potential energy is 0, outside this region it is
infinite. Write down the corresponding time-independent Schrodinger
equation for the problem and hence find the normalised eigenfunctions
of the Hamiltonian.

Show that the energy eigenvalues are

K2m2n?

n — 2mL_2 (TL:1,2,3)

At a particular moment, the particle is in a state described by the
normalised wave function

¢(x):{ Cr(L—z) : 0<z<L

0 : z<0 or z>1L

where C' is a real, positive normalisation constant.

(i) Determine the normalisation constant C.
(ii) Calculate the expectation value of the energy.

(iii) Calculate the probability, expressed as a percentage, that a mea-
surement of the energy will give the result F.

[20 marks]
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3. A beam of particles of mass m and energy F is incident in the positive
x direction on a potential barrier whose potential V' is given by

0 : <0 (region I)
V)= U : 0<z<L (region II)
0 : z>1L (region III)

where 0 < E < U.

(a) Show that the particle wave function in the z regions defined above
can be written

Yi(z) = Ae'? 4 Be “®
¢II(33) = C@Kw + l)G_Kz
szII ($) = Feiqav

where you should find expressions for K and gq.

(b) State the conditions on the particle wave function ) and its deriva-
tive ¢' which must be satisfied at the boundaries between regions
I, IT and IIT and use these to show that

4_ et {(K +iq)? e KL — (K — ig)® eKL}
F~ 4igK

The incident particle flux for the above scattering problem is de-
fined by
. hq
jr=—|AP.
m
Give the corresponding expressions for the reflected and transmit-

ted fluxes jr and jr. Hence define the reflection and transmission
coefficients R and T'.

c) Use the result of par o evaluate the transmission coefficien
Use th 1t of t (b) t luate the t issi fficient
T.

[20 marks]
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4. The Hamiltonian for a particle of mass m moving on the z-axis in a
harmonic oscillator potential can be written in the form

1
H = (a'a + E)hw

where the frequency w is a positive constant, and where [a,a'] = 1.
The position £ and momentum p are given by

¢ _ At d :h_a +T
aﬂ(a a') and p ﬁ(a a'),

Tr =

where

mw
a = - .

h

There is a normalised state |1p) which satisfies

(i)
(i)

(iii)

alt) = 0.

Show that |t¢g) is an eigenstate of H, and find the eigenvalue.

Using the commutation relations prove that

|¢1> = ClaTWJo)

is also an eigenstate of energy, and find the eigenvalue. Determine
the value which the constant C; must take if |¢;) is properly
normalised (you can choose C; to be real and positive).

By induction (or otherwise) prove that

[n) = Ca (af)" I¢0)

is an eigenstate of H. Find the eigenvalue, and find the normali-
sation constant C,,.

Show that
a|¢n> = \/ﬁ |¢nfl> .

By writing z|1,) in terms of |1,,_;) and |, 1), compute (z2) for
the state |¢,).

[20 marks]
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5. Angular momentum is represented by operators L; (i = 1,2,3) which
satisfy the commutation relations [Lq, Ls| = ih L3 (and cyclic permuta-
tions). Use these commutation relations to show that

[L? L3] =0

where L2 = L2 + L2+ L2 .

For this question you can assume the following properties of the angu-
lar momentum operators and their eigenstates. There are normalised
states |I,m) which are simultaneously eigenstates of L? and L3, satis-

fying

LYl,m) = K+ 1)|l,m)

where 21 is a positive integer and m € {—I, —[+1,---1—1,1}. Moreover
there are raising and lowering operators L, = L; + ¢Ly and L_ =
L, — 1Ly which act on the eigenstates according to

L. jl,m) =Mmn|ll,m+1) and L_|l,m) = N, ,|l,m—1), (2)

with

My =T/l +1) —m(m+1) and Ny =kl +1) —m(m—1).
(i) Use the commutation relations to show that
L,L =L2—-L2+hlL;. (3)

(ii) A particle is in a state such that [ = 3. Write down the allowed
values of m (corresponding to the eigenvalues of L3) and use equa-
tions (1) and (2) to write down 4 X 4 matrices representing Ls, L
and L_.

(iii) Check whether your matrices satisfy equation (3).

(iv) Use your matrix representations for L, L to find matrix repre-
sentations for L; and Ls.

[20 marks]
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Using integration by parts, or otherwise, show that for n > 0

n o0
I,=—-1, 1, where I, = / re " dr.
Q 0

Evaluate Iy and deduce the value of I3.

The Hamiltonian for a particle of mass m moving in three di-
mensions under the influence of an attractive Coulomb potential
is )
~ h K
H=-——V?>-"—
2m T
where r = |r| = /22 4+ y? + 2? and the radial part of the Laplacian
operator is
V2, = 6_2 gg
rad = 9p2 L ror

Given that the normalised ground state wave function is
o(r) = Ae” 2°7

where A is real, determine « and the ground state energy Fy. Also
find the normalisation constant A.

The potential is perturbed by the addition of a term or where o is
a small constant. Use first order perturbation theory to obtain an
approximation to the perturbed ground state energy in the form

E0+O'C

where C' is a constant which you should find.

[Standard results from perturbation theory may be assumed without

proof.]
[20 marks]
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7. (i) Give a statement of the variational principle and explain briefly
how it may be used to obtain an upper bound on the ground state
energy Fy of a system with Hamiltonian H.

(ii) The motion of a particle of mass m in one dimension is described
by the Hamiltonian

A h? d? 4
H=——+K K >0).
2mdm2+ v ( )

Consider the following trial wave function
¥(z) = Ae™

where o > 0. Calculate the normalisation constant A. Use the
variational method to find an upper bound for the ground state
energy.

Note: in (ii) you may use without proof the result

_ = n ,—bx _ n!
In(b):/o z"e dx—an

when b > 0.
[20 marks]|
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