MAY 2005 EXAMINATIONS
 Degree of Bachelor of Engineering : Year 2
 Degree of Master of Engineering : Year 2

MATHEMATICS AND NUMERICAL METHODS FOR CIVIL ENGINEERS
 (here section A only)

TIME ALLOWED : Three Hours

INSTRUCTIONS TO CANDIDATES

Full marks can be obtained for complete answers to SIX questions,
of which no more than FIVE answers must be from the Section A and no less than ONE must be from the Section B.
Candidates should submit answers to Sections A and B in separate books.

Paper Code MATH298
Page 1 of 6
CONTINUED/

SECTIONA

1. (a) Use Gaussian elimination method to show that one of the following systems has no solutions and the other has an infinite number of solutions. (HINT: find the rank of \mathbf{A} and $\mathbf{A} \mid \mathbf{b}$ and compare with n, the number of unknowns):
(i) $\left[\begin{array}{ccc}1 & -4 & 1 \\ 1 & -2 & -1 \\ 2 & -7 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-2 \\ 4 \\ -1\end{array}\right]$.
(ii) $\left[\begin{array}{ccc}1 & -2 & -1 \\ -2 & 3 & 4 \\ 1 & -1 & -3\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}3 \\ 5 \\ 0\end{array}\right]$.
(b) Find the general solution of whichever of the above systems is consistent and write the solution in parametric form
2. (a) Find the adjoint, $\operatorname{adj}(\mathbf{A})$, determinant, $\operatorname{det} \mathbf{A}$, and inverse, \mathbf{A}^{-1}, of the square matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
-1 & 0 & 2 \\
-1 & 2 & 3 \\
2 & 1 & -1
\end{array}\right]
$$

(11 marks)
(b) Using your result from part (2a), find the solution to the system of simultaneous equations

$$
\begin{aligned}
-x+2 z & =-1 \\
-x+2 y+3 z & =4 \\
2 x+y-z & =7
\end{aligned}
$$

3. Consider the matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
0 & -2 & -2 \\
-3 & -1 & 3 \\
1 & 1 & -3
\end{array}\right]
$$

- Write down its characteristic polynomial. Verify that its eigenvalues are $\lambda_{1}=2$, $\lambda_{2}=-2$ and $\lambda_{3}=-4$.
- Find an eigenvector for each of the three eigenvalues.
- Find the unit length (normalised) eigenvectors corresponding to the three eigenvalues λ_{1}, λ_{2} and λ_{3}.

4. (a) Show that the point $(0,0)$ is a saddle point of the function

$$
f(x, y)=\left(1+x^{2}\right) \sin (x y) .
$$

(b) Show that the point $(1,1)$ is a critical point of the function

$$
f(x, y)=x^{2}-x+1-x y-y+y^{2} .
$$

Classify this critical point.
5. (a) Compute the partial derivatives $f_{x}, f_{y}, f_{x x}, f_{x y}$ and $f_{y y}$ of the function

$$
f(x, y)=\ln (x) \sin (3 y) .
$$

(b) Using your result from part (5a), find the Taylor series at $(e, \pi / 3)$ for f up to and including terms quadratic in the increments δx and δy.
(9 marks)
(c) Use the Taylor series found in part (5b) to obtain the linear and quadratic approximations for $f(2.5,1.1)$, with 4 significant figures. For reference:

$$
\pi=3.141592653 \ldots, \quad e=2.718281828 \ldots
$$

6. (a) The function $g(x)$ is periodic, with period $p=2 L=2$, and has the Fourier series expansion

$$
g(x)=a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right] .
$$

State the formulae for the Fourier coefficients, $a_{0}, a_{n}, n=1,2, \ldots$ and b_{n}, $n=1,2, \ldots$, valid for this period.
(5 marks)
(b) Sketch the graph of $g(x)$ defined by

$$
g(x)=\left\{\begin{array}{l}
-x, \quad-1 \leq x \leq 0 \\
x, \quad 0 \leq x \leq 1 \\
g(x \pm 2), \quad \text { for all } x
\end{array}\right.
$$

for $-3<x<3$. Give the definition of an even function. Explain what special features a Fourier series of an even function has. Explain why the function $g(x)$ defined above is even.
(4 marks)
(c) Find the Fourier series of the function $g(x)$ defined above. You may use the following result: $\int x \cos (k x) \mathrm{d} x=\frac{x}{k} \sin (k x)+\frac{1}{k^{2}} \cos (k x)$, where $k \neq 0$ is a constant. Write out this series explicitly up to terms with $\cos (5 \pi x)$ and $\sin (5 \pi x)$.

SECTIONB

