MAY 2004 EXAMINATIONS

```
Degree of Bachelor of Engineering : Year 2
    Degree of Master of Engineering : Year 2
```


MATHEMATICS AND NUMERICAL METHODS FOR CIVIL ENGINEERS

(here section A only)

TIME ALLOWED : Three Hours

INSTRUCTIONS TO CANDIDATES

Full marks can be obtained for complete answers to SIX questions, of which no more than FIVE answers must be from the Section A and no less than ONE must be from the Section B.
Candidates should submit answers to Sections A and B in separate books.

SECTION A

1. (a) Use Gaussian elimination method to show that one of the following systems has no solutions and the other has an infinite number of solutions. (HINT: find the rank of \mathbf{A} and $\mathbf{A} \mid \mathbf{b}$ and compare with n, the number of unknowns):
(i) $\left[\begin{array}{ccc}1 & -4 & 1 \\ 1 & -2 & -3 \\ 2 & -7 & 0\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-2 \\ 4 \\ 9\end{array}\right]$.
[7 marks]
(ii) $\left[\begin{array}{ccc}1 & -3 & -1 \\ 2 & -5 & -4 \\ 1 & -4 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}3 \\ 5 \\ 4\end{array}\right]$.
[7 marks]
(b) Find the general solution of whichever of the above systems is consistent and write the solution in parametric form
2. (a) Find the adjoint, $\operatorname{adj}(\mathbf{A})$, determinant, $\operatorname{det} \mathbf{A}$, and inverse, \mathbf{A}^{-1}, of the square matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & -2 \\
2 & -1 & -1 \\
1 & -1 & -1
\end{array}\right]
$$

[11 marks]
(b) Using your result from part (2a), find the solution to the system of simultaneous equations

$$
\begin{aligned}
x-2 z & =1 \\
2 x-y-z & =-2 \\
x-y-z & =3
\end{aligned}
$$

[6 marks]
3. Consider the matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 2 & 1 \\
-3 & 0 & 4
\end{array}\right]
$$

- Write down its characteristic polynomial. Verify that its eigenvalues are $\lambda_{1}=1$, $\lambda_{2}=2$ and $\lambda_{3}=3$.
- Find an eigenvector for each of the three eigenvalues.
- Find the unit length (normalised) eigenvectors corresponding to the three eigenvalues λ_{1}, λ_{2} and λ_{3}.

4. (a) Show that the point $(0,0)$ is a saddle point of the function

$$
f(x, y)=\left(1+x^{2}-y\right) e^{y}
$$

[8 marks]
(b) Show that the point $(0,0)$ is a critical point of the function

$$
f(x, y)=x^{2}+2 x y+3 y^{2} .
$$

Classify this critical point.
5. (a) Compute the partial derivatives $f_{x}, f_{y}, f_{x x}, f_{x y}$ and $f_{y y}$ of the function

$$
f(x, y)=\cos (2 x) e^{-y}
$$

[4 marks]
(b) Using your result from part (5a), find the Taylor series at $(\pi / 4,0)$ for f up to and including terms quadratic in the increments δx and δy.
[9 marks]
(c) Use the Taylor series found in part (5b) to obtain the linear and quadratic approximations for $f(0.7,0.1)$, with 4 decimal places. For reference: $\pi=$ 3.14159265358....
6. (a) The function $g(x)$ is periodic, with period $p=2 L=4$, and has the Fourier series expansion

$$
g(x)=a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{2}\right)+b_{n} \sin \left(\frac{n \pi x}{2}\right)\right] .
$$

State the formulae for the Fourier coefficients, $a_{0}, a_{n}, n=1,2, \ldots$ and b_{n}, $n=1,2, \ldots$, valid for this period.
[5 marks]
(b) Sketch the graph of $g(x)$ defined by

$$
g(x)=\left\{\begin{array}{lc}
-2-x, & -2<x<0 \\
2-x, & 0<x<2 \\
g(x \pm 4), & \text { for all } x
\end{array}\right.
$$

for $-6<x<6$. Give the definition of an odd function. Explain what special features a Fourier series of an odd function has. Explain why the function $g(x)$ defined above is odd.
[4 marks]
(c) Find the Fourier series of the function $g(x)$ defined above. You may use the following result: $\int(A+B x) \sin (k x) \mathrm{d} x=-\frac{A+B x}{k} \cos (k x)+\frac{B}{k^{2}} \sin (k x)$, where A, B and $k \neq 0$ are constants. Write out this series explicitly up to terms with $\cos (5 \pi x)$ and $\sin (5 \pi x)$.

SECTIONB

