THE UNIVERSITY
 of LIVERPOOL

Math 295

January 2005 Exam

Engineering Analysis - Year 2 Engineers

Full marks will be awarded for complete answers to FOUR questions. Only the best 4 answers will be taken into account. Note that each question carries a total of 20 marks that are distributed as stated.

For this half unit course, there is a C/A component.

THE UNIVERSITY
 of LIVERPOOL

1.

(20 marks)
(a) A common practice for making engineering products is by punching desirable shapes out of sheet metal. Suppose one wishes to punch out, on a square metal sheet of size $s(\mathrm{~m})$ and thickness $t(\mathrm{~m}), 4$ identical holes of circular shapes of radius $r(m)$.
(i) Show that the remaining sheet has the volume of

$$
V=V(r, s, t)=t s^{2}-4 \pi t r^{2}\left(m^{3}\right)
$$

(ii) If all measurements are subject to the operational error of $\delta=0.01$ (m), determine the approximate error (keeping at least 3 decimal digits) in the above quantity V, in the case of these specifications:

$$
t=1(m), \quad s=3(m), \quad r=0.5(m)
$$

[9 marks]
(b) For the following function

$$
f=f(x, y, z)=x \sin (y+3 z)+\cos (y)+y e^{-x}
$$

(i) verify that
[3 marks]

$$
\frac{\partial^{2} f}{\partial x \partial z}=\frac{\partial^{2} f}{\partial z \partial x}
$$

(ii) show that f satisfies the following equation

$$
\frac{\partial}{\partial y}\left(e^{x} \frac{\partial f}{\partial x}\right)=e^{x} \cos (y+3 z)-1
$$

THE UNIVERSITY
 of LIVERPOOL

2.

(20 marks)

Consider the following implicit function $z=z(x, y)$ determined by

$$
\tan ^{-1}\left(\sin ^{2}(3 x y)\right)+z^{2}-6 x y z-12 y-10=0 .
$$

Given the formula

$$
\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}
$$

(a) use the implicit differentiation to compute z_{x} and verify that

$$
z_{y}=3 \frac{x \sin (3 x y) \cos (3 x y)-(x z+2)\left[1+\sin ^{4}(3 x y)\right]}{\left[1+\sin ^{4}(3 x y)\right](3 x y-z)}
$$

[10 marks]
(b) evaluate z_{x} and z_{y} at the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)=(0,-1 / 2,2)$ and hence find the tangent plane to this surface at P_{0}.
[10 marks]

3.

(20 marks)
(a) For the function $f=f(x, y)=(y-1)^{4} e^{-x^{2}}$, near $p_{1}=\left(x_{1}, y_{1}\right)=(0,2)$, find the Taylor formulae $p_{1}(x, y)$ and $p_{2}(x, y)$ which are respectively (up to and including) the first and second order terms.
[14 marks]
(b) For the function $F=z^{3} f(x, y)=z^{3}(y-1)^{4} e^{-x^{2}}$, compute the direction derivative $D_{t_{u}} F$ at the point $p_{2}=\left(x_{2}, y_{2}, z_{2}\right)=(0,2,1)$ in the direction

$$
t=(3,4,5)
$$

THE UNIVERSITY
 of LIVERPOOL

4.

(20 marks)
Given the periodic function $f(x)$, with period $L=2 \pi$,

$$
f(x)=\left\{\begin{array}{lr}
\pi+x, & -\pi \leq x<0 \\
\pi-x, & 0 \leq x \leq \pi
\end{array}\right.
$$

(a) sketch the function $f(x)$ in $-3 \pi<x \leq 3 \pi$ and decide if $f(x)$ is odd or even.
[4 marks]
(b) Find the Fourier series for the above function.

Hint. You may assume $\cos (n \pi)=(-1)^{n}$.
[12 marks]
(c) To obtain a Fourier half range series, extend the following function

$$
f(x)= \begin{cases}(\pi / 2-x) x, & 0 \leq x<\pi / 2 \\ x-\pi / 2, & \pi / 2 \leq x \leq \pi\end{cases}
$$

as shown in Figure 1 to an even function $g(x)$ in $[-\pi, \pi]$ and sketch $g(x)$.
(Only the sketch is required. Do not work out the Fourier series.) [4 marks]

Figure 1. The function $f(x)$ in $[0, \pi]-\mathrm{Q} 4$ (c)

THE UNIVERSITY
 of LIVERPOOL

5.

(20 marks)
Define the Laplace transform for function $f(t)$.
(a) Using the definition, compute

$$
\mathcal{L}\left\{e^{\mu_{1} t}+e^{-\mu_{2} t}\right\}
$$

where μ_{1}, μ_{2} are some real and known constants.
(b) Consider the linear ordinary differential equation

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+x=e^{-t}, \quad x(0)=-2, \quad \frac{d x}{d t}(0)=3
$$

Firstly verify that

$$
\bar{x}(s)=-\frac{(3+2 s) s}{(s+1)^{3}}
$$

Secondly find $x=x(t)$ by using the inverse Laplace transform approach and the properties of the Laplace transform:

$$
\left\{\begin{array}{l}
\mathcal{L}\left\{\frac{d x}{d t}(t)\right\}=s \mathcal{L}\{x(t)\}-x(0) \\
\mathcal{L}\left\{\frac{d^{2} x}{d t^{2}}(t)\right\}=s^{2} \mathcal{L}\{x(t)\}-s x(0)-\frac{d x}{d t}(0) \\
\mathcal{L}\left\{t^{n} e^{\alpha t}\right\}=\frac{n!}{(s-\alpha)^{n+1}}
\end{array}\right.
$$

[11 marks]
(c) Without solving any equations, decide if the Laplace transforms may be applied to solve the following equations (simply answer Yes or No):

$$
\begin{gather*}
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+x=\sin ^{2}(t) e^{-t} \tag{3a}\\
\left(\frac{d^{2} x}{d t^{2}}\right)^{2}+2 \frac{d x}{d t}+x=e^{-t} \tag{3b}\\
\frac{d^{2} x}{d t^{2}}+2 x \frac{d x}{d t}+x=e^{-t} \tag{3c}
\end{gather*}
$$

[3 marks]

