January 2007 EXAMINATIONS
 Bachelor of Engineering: Year 2
 Master of Engineering: Year 2

ENGINEERING ANALYSIS

TIME ALLOWED : Two Hours

INSTRUCTIONS TO CANDIDATES

Full marks can be obtained for complete answers to FOUR questions. Only the best FOUR questions will be counted.

This examination contributes 90% towards the final mark.
The balance comes from two class tests.

THE UNIVERSITY
 of Liverpool

1.

(a) Given

$$
u(x, y)=\ln (x+y)+\tan ^{-1}(x y)
$$

and

$$
x=\tan (t), \quad y=\sqrt{t}
$$

express $d u / d t$ as a function of x, y and t by using the chain rule.
[7 marks]
(b) Given

$$
u^{2}-x u-y u^{3}+1=0,
$$

evaluate $u_{x x}$ by the use of implicit differentiation.
[9 marks]
(c) Given $f(x, y)=\mathrm{e}^{\sin (x-y)}$, obtain its Taylor series expansion about the point $(x, y)=(1,1)$, up to and including second order terms.
[9 marks]
Hint: Use the formula

$$
\begin{aligned}
& f(a, b)+(x-a) f_{x}(a, b)+(y-b) f_{y}(a, b) \\
& +\frac{1}{2}\left[(x-a)^{2} f_{x x}(a, b)+2(x-a)(y-b) f_{x y}(a, b)+(y-b)^{2} f_{y y}(a, b)\right]
\end{aligned}
$$

for the expansion of the function $f(x, y)$ about the point (a, b) up to and including second order terms.

THE UNIVERSITY of LIVERPOOL

2.

(a) Find the two stationary points of the function

$$
f(x, y)=x^{3}-6 x y+y^{3},
$$

and classify them.
[12 marks]
Hint: A stationary point (a, b) of the function $f(x, y)$ is
a minimum if $f_{x y}^{2}(a, b)-f_{x x}(a, b) f_{y y}(a, b)<0 \quad$ and $\quad f_{x x}(a, b)>0$,
a maximum if $f_{x y}^{2}(a, b)-f_{x x}(a, b) f_{y y}(a, b)<0 \quad$ and $\quad f_{x x}(a, b)<0$, and a saddle point if $f_{x y}^{2}(a, b)-f_{x x}(a, b) f_{y y}(a, b)>0$.
(b) Find the directional derivative of the function

$$
f(x, y, z)=z \cos (x y)
$$

at the point $P(0,1,5)$ along the direction from P to $P^{\prime}(6,3,8)$.
Also find the equation of the tangent plane to the surface

$$
F(x, y, z(x, y))=f(x, y, z)-5=0
$$

together with the parametric equations of its normal at the point $P(0,1,5)$.
[13 marks]
Hint: The directional derivative of the function $f=f(x, y, z)$ at the point $P(a, b, c)$ in the direction of the unit vector \mathbf{t}_{u} is

$$
D_{\mathbf{t}_{u}} f=\left.\operatorname{grad} f\right|_{P(a, b, c)} \cdot \mathbf{t}_{u} .
$$

The equation of the tangent plane to the surface $F(x, y, z(x, y))=0$ at the point $P(a, b, c)$ is given by

$$
\left.(x-a, y-b, z-c) \cdot \operatorname{grad} F\right|_{P(a, b, c)}=0
$$

and the parametric equations of the normal at the same point are

$$
(x, y, z)=(a, b, c)+\left.\lambda \operatorname{grad} F\right|_{P(a, b, c)}
$$

THE UNIVERSITY
 of LIVERPOOL

3. The formula for the Fourier series of a function $f(t), t \in(0,2 \pi)$, of period 2π is

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos (n t)+b_{n} \sin (n t)\right\}
$$

where the Euler-Fourier coefficients can be computed by the formulae

$$
a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) d t, \quad a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \cos (n t) d t, \quad b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \sin (n t) d t .
$$

(a) Given that

$$
f(t)=\left\{\begin{array}{cl}
\pi-t, & 0<t<\pi \\
0, & \pi \leq t<2 \pi
\end{array}\right.
$$

sketch the sum of its Fourier series for $-4 \pi<t<4 \pi$.
(b) Show that its Fourier series has the following form

$$
f(t)=\frac{\pi}{4}+\sum_{n=1}^{\infty}\left\{\frac{1-(-1)^{n}}{\pi n^{2}} \cos (n t)+\frac{1}{n} \sin (n t)\right\} .
$$

[10 marks]
(c) Hence, by setting $t=0$, prove that

$$
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots=\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}=\frac{\pi^{2}}{8}
$$

(d) Given that

$$
F(t)= \begin{cases}\frac{\pi}{2}-t, & 0<t<\pi \\ -\frac{\pi}{2}, & \pi \leq t<2 \pi\end{cases}
$$

obtain its Fourier series directly from (a) and (b).

THE UNIVERSITY
 of LIVERPOOL

4. The formula for the Fourier half range cosine series of a function $f(t)$, $t \in(0, \alpha)$, of period 2α is

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{\alpha} t\right)
$$

where

$$
a_{0}=\frac{2}{\alpha} \int_{0}^{\alpha} f(t) d t, \quad a_{n}=\frac{2}{\alpha} \int_{0}^{\alpha} f(t) \cos \left(\frac{n \pi}{\alpha} t\right) d t .
$$

The formula for the Fourier half range sine series of a function $f(t), t \in$ $(0, \alpha)$, of period 2α is

$$
f(t)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi}{\alpha} t\right), \quad \text { where } \quad b_{n}=\frac{2}{\alpha} \int_{0}^{\alpha} f(t) \sin \left(\frac{n \pi}{\alpha} t\right) d t
$$

(a) Explain briefly, with reference to the coefficients a_{0}, a_{n} or b_{n}, why the constant 2 appears in their formulae.
(b) Given that

$$
f(t)=\left\{\begin{aligned}
1, & 0<t<L / 2 \\
-1, & L / 2<t<L
\end{aligned}\right.
$$

sketch the sum of its Fourier half range sine and the sum of its Fourier half range cosine series for $-3 L<t<3 L$.
[10 marks]
(c) Show that its Fourier half range sine series has the following form

$$
f(t)=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1+(-1)^{n}-2 \cos \left(\frac{n \pi}{2}\right)}{n} \sin \left(\frac{n \pi}{L} t\right)
$$

(d) Show that its Fourier half range cosine series has the following form

$$
f(t)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin \left(\frac{n \pi}{2}\right)}{n} \cos \left(\frac{n \pi}{L} t\right) .
$$

THE UNIVERSITY
 of LIVERPOOL

5. Given that the functions $x(t)$ and $y(t)$ satisfy the simultaneous differential equations

$$
2 \frac{d x}{d t}+2 x+\frac{d y}{d t}=2 t+4, \quad 4 x-\frac{d x}{d t}+2 y=8 t+7
$$

and the initial conditions $x(0)=2, y(0)=-1$, show that the Laplace transform of $x(t)$ is

$$
\bar{x}(s)=\frac{2 s^{3}-s^{2}+4}{s^{2}\left(s^{2}+4\right)} .
$$

[10 marks]
Find the unknown coefficients in the equation

$$
\frac{2 s^{3}-s^{2}+4}{s^{2}\left(s^{2}+4\right)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C s+D}{s^{2}+4}
$$

[7 marks]
and hence, or otherwise, find the functions $x(t)$ and $y(t)$.
[8 marks]
Hint: Use the table of Laplace transforms on the separate sheet.

