Math 295

January 2004 Exam

Engineering Analysis - Year 2 Engineers

Full marks will be awarded for complete answers to FOUR questions. Only the best 4 answers will be taken into account. Note that each question carries a total of 20 marks that are distributed as stated.

```
For this half unit course, the exam accounts for 80%
while homework for 20%.
```


THE UNIVERSITY
 of LIVERPOOL

1.

(1) A workshop engineer intends to cut a small cylinder of radius r and height h out of a larger steel cylinder of radius R and height H. He knows how to calculate the volume V of the larger cylinder after the cut according to

$$
V=V(r, h, R, H)=\pi R^{2} H-\pi r^{2} h .
$$

If the measurements of r, h, R, H are subject to small changes of $\delta r, \delta h, \delta R, \delta H$ respectively, help him to work out a formula for the proportional change δV in the volume V.
[10 marks]
(2) Find all the FOUR stationary points of function

$$
f=f(x, y)=2 x^{3}+6 x y^{2}-3 y^{2}-150 x
$$

and decide whether one of them $\left(x_{o}, y_{o}\right)$, nearest to $(5,1)$, is a local maximum or minimum by checking the signs of $\left.f_{x x}\right|_{\left(x_{o}, y_{o}\right)}$ and $\left.\left(f_{x y}^{2}-f_{x x} f_{y y}\right)\right|_{\left(x_{o}, y_{o}\right)}$.
[5 marks]

THE UNIVERSITY
 of LIVERPOOL

2.

(1) For the function $f=f(x, y)=\sin (x y) e^{x-y}-5$, verify that

$$
\begin{aligned}
f_{x y} & =e^{x-y}[\cos (x y)+x \cos (x y)-y \cos (x y)-\sin (x y)-x y \sin (x y)], \\
f_{y}(\pi, 1) & =-\pi e^{\pi-1}=-\pi \exp (\pi-1), \quad f_{x x}(\pi, 1)=-2 \exp (\pi-1),
\end{aligned}
$$

and further find the Taylor expansion (up to and including the second order terms) near the point
[10 marks]

$$
(a, b)=(\pi, 1)
$$

(2) For the surface $z=z(x, y)$ implicitly defined by the following equation

$$
\begin{aligned}
F(x, y, z)= & 5-\pi e^{\pi-1}(y-1)-(x-\pi) e^{\pi-1}+\pi e^{\pi-1}(y-1)^{2} \\
& -\pi e^{\pi-1}(x-\pi)(y-1)-(x-\pi)^{2} e^{\pi-1}-z=0
\end{aligned}
$$

near the point

$$
p=\left(x_{0}, y_{0}, z_{0}\right)=\left(\pi, 0,5+2 \pi e^{\pi-1}\right)
$$

(2a) compute the tangent plane

$$
z-z_{0}=\left.\left(x-x_{0}\right) z_{x}\right|_{p}+\left.\left(y-y_{0}\right) z_{y}\right|_{p}
$$

that passes through the point p;
(2b) compute the gradient vector ∇F of F at $p=\left(x_{0}, y_{0}, z_{0}\right)$.

THE UNIVERSITY
 of LIVERPOOL

3.

Sketch the function $f(t)$ in $-3 \pi<t \leq 3 \pi$, when

$$
f(t)= \begin{cases}\pi-t, & 0<t \leq \pi \\ 0, & -\pi<t \leq 0\end{cases}
$$

is periodic with period $T=2 \pi$.
Further,
(1) State the formulae for all the Fourier coefficients a_{0}, a_{n}, b_{n} for the Fourier series expansion
[6 marks]

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n t)+b_{n} \sin (n t)\right) .
$$

(2) Verify that the Fourier series for the above function is
[10 marks]

$$
f(t)=\frac{\pi}{4}+\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\left[1-(-1)^{n}\right]}{n^{2}} \cos (n t)+\sum_{n=1}^{\infty} \frac{1}{n} \sin (n t)
$$

You may assume $\cos (n \pi)=(-1)^{n}$.

THE UNIVERSITY
 of LIVERPOOL

4.

[20 marks]
For function $f(x)$ defined by

$$
f(x)= \begin{cases}\pi-x, & \pi / 2 \leq x \leq \pi \\ x, & 0 \leq x \leq \pi / 2\end{cases}
$$

(1) Verify, using the change of variable $y=\pi-x$ and $\cos (n \pi)=(-1)^{n}$, that

$$
\begin{gathered}
\int_{\pi / 2}^{\pi}(\pi-x) \sin n x d x=(-1)^{n+1} \int_{0}^{\pi / 2} y \sin n y d y \\
\int_{0}^{\pi} f(x) \sin (n x) d x=\left[1+(-1)^{n+1}\right] \int_{0}^{\pi / 2} x \sin n x d x
\end{gathered}
$$

and further show that
[10 marks]

$$
\int_{0}^{\pi} f(x) \sin (n x) d x= \begin{cases}0, & \text { when } n \geq 0 \text { is even } \\ \frac{2}{n^{2}} \sin \left(\frac{n \pi}{2}\right), & \text { when } n \geq 1 \text { is odd }\end{cases}
$$

Hint. $\sin (y \pm n \pi)=(-1)^{n} \sin (y)$ for $n=1,2,3, \ldots$.
(2) Following (1), show that the Fourier half range Since series for $f(x)$ is given by

$$
f(x)=\frac{4}{\pi}\left(\sin x-\frac{1}{9} \sin 3 x+\frac{1}{25} \sin 5 x-\frac{1}{49} \sin 7 x+\cdots\right) .
$$

[6 marks]
(3) Explain how to obtain a Fourier half range Cosine series for $f(x)$ i.e. show how to extend the function and what the proper formulae are (without finding the series).
[4 marks]

THE UNIVERSITY
 of LIVERPOOL

5.

[20 marks]
The Laplace transform for function $f(t)$ is defined by

$$
\bar{f}(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

(1) Using the definition, compute

$$
\mathcal{L}\left\{e^{\lambda t}+e^{-\lambda t}\right\}
$$

where λ is some known constant.
(2) Solve the ordinary differential equation for $x=x(t)$
[12 marks]

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+x=e^{-t}, \quad x(0)=-1, \quad \frac{d x}{d t}(0)=1
$$

by using the Laplace transform approach and the properties of the Laplace transform:

$$
\left\{\begin{array}{l}
\mathcal{L}\left\{\frac{d x}{d t}(t)\right\}=s \mathcal{L}\{x(t)\}-x(0) \\
\mathcal{L}\left\{t^{n} e^{\alpha t}\right\}=\frac{n!}{(s-\alpha)^{n+1}}, \\
\mathcal{L}\left\{\frac{d^{2} x}{d t^{2}}(t)\right\}=s^{2} \mathcal{L}\{x(t)\}-s x(0)-\frac{d x}{d t}(0) .
\end{array}\right.
$$

