1. (a) The longitudinal wave speed in a rod with Lamé constants λ and μ with mass density ρ is given by the formula

$$
c_{L}(\lambda, \mu, \rho)=\sqrt{\frac{\lambda+2 \mu}{\rho}}
$$

If the measurements of λ, μ and ρ are subject to changes of $d \lambda, d \mu$ and $d \rho$ respectively, show that the proportional change in c_{L} is given by

$$
\frac{d c_{L}}{c_{L}}=\frac{1}{2}\left[\frac{1}{\lambda+2 \mu} d \lambda+\frac{2}{\lambda+2 \mu} d \mu-\frac{d \rho}{\rho}\right]
$$

Find the percentage error in the measurement of c_{L} if the maximum percentage errors in λ, μ and ρ are $2 \%, 3 \%$ and 1% respectively and the values obtained experimentally are $\lambda=1, \mu=1 / 2$ and $\rho=2$.
(b) Find ALL the stationary points of the function

$$
f(x, y)=x^{3}+y^{3}+3 x^{2}-3 y^{2}
$$

and for each determine whether it is a maximum, a minimum or a saddle point.
[10 marks]
2. Consider the implicit function $z=z(x, y)$ determined by

$$
F(x, y, z)=z^{2}+z x^{2} y+6 x y-\log \left(x^{2}+y^{2}\right)=0
$$

(a) Use implicit differentiation to compute z_{x} and verify that

$$
z_{y}=\frac{2 y-\left(x^{2}+y^{2}\right)\left(x^{2} z+6 x\right)}{\left(x^{2}+y^{2}\right)\left(2 z+y x^{2}\right)}
$$

[6 marks]
(b) Evaluate z_{x} and z_{y} at the point $P_{0}=(0, e, \sqrt{2})$ and hence find the equation of the tanget plane to the surface $z=z(x, y)$ at P_{0}.
(c) When is z NOT defined as an implicit function of x and y ? [4 marks]
(d) Considering the change of variable $x=\cos (t), y=\sin (t)$ and $z=t$, find $\frac{d F}{d t}$ using the Chain Rule.
3. (a) For the function $f(x, y)=y \cos \left(x^{2} y\right)$ find the Taylor polynomial of second order $p_{2}(x, y)$ near $(1,2 \pi)$, verifying first that

$$
\begin{aligned}
& f_{x y}(x, y)=-4 x y \sin \left(x^{2} y\right)-2 x^{3} y^{2} \cos \left(x^{2} y\right) \\
& f_{x y}(1,2 \pi)=-8 \pi^{2}, \quad f_{y}(1,2 \pi)=1
\end{aligned}
$$

[14 marks]
(b) Given the function

$$
F(x, y, z)=x^{2} \cos (y+2 z)+y^{2} z e^{-x}
$$

compute the directional derivative $D_{t_{u}} F$ at the point $P_{0}=(2,0, \pi)$ in the direction $\mathbf{t}=(1,-1,3)$.
4. (a) Sketch the graph of the function $f(t)$ in the interval $-4 \pi<t \leq 4 \pi$ when

$$
f(t)=|t|, \quad-\pi<t \leq \pi
$$

is periodic with period $T=2 \pi$.
(b) State the formulae for all the Fourier coefficients a_{0}, a_{n} and b_{n} for the Fourier series expansion

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n t)+b_{n} \sin (n t)\right) .
$$

(c) Verify that the Fourier series for the above function is

$$
f(t)=\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{-4}{(2 n-1)^{2} \pi} \cos ((2 n-1) t)
$$

You may assume that $\cos (n \pi)=(-1)^{n}$.
5. Using the definition of the Laplace transform

$$
\bar{f}(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

(a) Show that if $|x(t)| \leq M e^{b t}$ for $t \geq t_{0}, x(t)$ continuous for $t \geq 0$ and $\frac{d x}{d t}(t)$ piecewise continuous, then for $s>b$

$$
\mathcal{L}\left\{\frac{d x}{d t}(t)\right\}=s \mathcal{L}\{x(t)\}-x(0)
$$

[8 marks]
(b) Solve the ordinary differential equation for $x=x(t)$

$$
\frac{d^{2} x}{d t^{2}}-3 \frac{d x}{d t}-4 x=e^{-2 t}, \quad x(0)=1, \frac{d x}{d t}(0)=-1
$$

by using the Laplace transform, verifying first that

$$
\bar{x}(s)=\frac{s^{2}-2 s-7}{(s+2)\left(s^{2}-3 s-4\right)},
$$

and using the fact in (a) together with the following properties of the Laplace transform:

$$
\left\{\begin{array}{l}
\mathcal{L}\left\{\frac{d^{2} x}{d t}\left(t^{2}\right)\right\}=s^{2} \mathcal{L}\{x(t)\}-s x(0)-\frac{d x}{d t}(0) \\
\mathcal{L}\left\{t^{n} e^{\alpha t}\right\}=\frac{n!}{(s-\alpha)^{n+1}}
\end{array}\right.
$$

