THE UNIVERSITY of LIVERPOOL

SECTION A

1. (i) Solve the following system of linear equations

$$
\begin{aligned}
5 x+3 y+7 z & =18 \\
3 x-2 y-z & =-2 \\
x+y+z & =4
\end{aligned}
$$

[13 marks]
(ii) Determine whether the following matrix is invertible. (You are not required to compute the inverse matrix explicitly).

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
3 & 2 & -1 \\
1 & -1 & 2
\end{array}\right)
$$

[7 marks]
(iii) Let A, B, P be square matrices, such that the following expression is well defined:

$$
A P=P^{T} B^{T}
$$

Assume further that the matrix P is invertible. Show that

$$
B=P^{T} A^{T} P^{-1}
$$

3 marks]
Furthermore, show that

$$
\operatorname{det}(A)=\operatorname{det}(B)
$$

THE UNIVERSITY of LIVERPOOL

2. (i) Find the eigenvalues and eigenvectors of the following matrix:

$$
\left(\begin{array}{ccc}
1 & 3 & 0 \\
4 & 2 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

[10 marks]
(ii) Use your results to find the solution of the differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=x+3 y \\
& \frac{d y}{d t}=4 x+2 y \\
& \frac{d z}{d t}=-z
\end{aligned}
$$

given that $x(0)=4, y(0)=3, z(0)=2$.
[9 marks]
(iii) Find the first derivatives of the function

$$
f(x, y)=\left(6 x^{2} y-3 x y^{2}\right) \cos (2 x y)+x^{2} e^{x y} \sin (2 x y)
$$

[6 marks]
3. The variable y is the solution of the differential equation

$$
\frac{d y}{d x}=4+x-y
$$

where $y=2$ for $x=0$.
(i) Find the quadratic Taylor series for y about the point $(x, y)=(0,2)$. Evaluate the series at $x=1$ to obtain an approximate value, up to 4 decimals, for $y(1)$.
[8 marks]
(ii) Use Euler's method with step length 0.2 to find the value, up to 4 decimals, of y at $x=1$. Explain carefully what you are doing and make a list of results at all intermediate points.
[10 marks]
(iii) Show that

$$
y(x)=x+3-e^{-x}
$$

satisfies the above differential equation and the initial condition. Use this to compute the value of y at $x=1$ up to 4 decimals.
[4 marks]
(iv) Compare your results and comment on them. In particular, what is the error expected when using Euler's method, and how does this compare to your results?
[3 marks]

SECTION B

