THE UNIVERSITY
of LIVERPOOL

Math 284 May 2005 Examination

"Linear Algebra for Year 2 Physicists"

Full marks will be awarded for complete answers to FOUR questions. Only the best 4 answers will be taken into account. Note that each question carries a total of 20 marks that are distributed as stated.

This is a half unit course.
As agreed, the exam counts for 90% while homework for 10%.
1.
(a) Explain how to determine the dimension of the subspace $V=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{r}\right)$ with $r \leq n$ and all $v_{j} \in R^{n}$.
(b) From the following three matrices

$$
B_{1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right], B_{2}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 2 \\
-3 & 0 & 1
\end{array}\right], B_{3}=\left[\begin{array}{rrr}
1 & 2 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

identify the inverse of the matrix

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]
$$

(c) Show that $\lambda=5$ is an eigenvalue of the matrix

$$
B=\left[\begin{array}{lllll}
2 & 1 & 3 & 0 & 5 \\
1 & 2 & 0 & 0 & 1 \\
0 & 0 & 4 & 0 & 1 \\
9 & 9 & 0 & 5 & 9 \\
9 & 0 & 0 & 0 & 6
\end{array}\right]
$$

(d) Find the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{rr}
4 & -2 \\
-2 & 4
\end{array}\right]
$$

Further solve the system of differential equations

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}
$$

where

$$
\mathbf{x}=\binom{x_{1}(t)}{x_{2}(t)} .
$$

2.

[20 marks]
Consider the initial value problem

$$
\frac{d y}{d x}=\sin (x+y-2), \quad y(0)=3
$$

Find approximations to $y(0.2)$
(a) using the explicit Euler method with a steplength $h=0.1$;
(b) using the Runge-Kutta method with a steplength $h=0.2$;

$$
\begin{aligned}
w_{0} & =y_{0}=c, \\
w_{n+1} & =w_{n}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
\text { with } k_{1} & =f\left(x_{n}, w_{n}\right), \\
k_{2} & =f\left(x_{n}+\frac{1}{2} h, w_{n}+\frac{1}{2} h k_{1}\right), \\
k_{3} & =f\left(x_{n}+\frac{1}{2} h, w_{n}+\frac{1}{2} h k_{2}\right), \\
k_{4} & =f\left(x_{n}+h, w_{n}+h k_{3}\right) .
\end{aligned}
$$

Given that the exact solution is $y^{*}=y(0.2)=3.1844$, which of the above two methods is more accurate?
3.
(1) In each of the following cases, determine (giving your reason) whether the given vectors are linearly dependent or linearly independent:
(1a) $z_{1}=\left(\begin{array}{lll}3 & -1 & 2\end{array}\right), \quad z_{2}=\left(\begin{array}{lll}-9 & 3 & -6\end{array}\right)$;
(1b) $m_{1}=\left(\begin{array}{lll}-3 & 2 & 0\end{array}\right), \quad m_{2}=\left(\begin{array}{lll}-4 & 3 & 1\end{array}\right), \quad m_{3}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$;
(1c) $v_{1}=\left(\begin{array}{llll}0 & 0 & 1 & 3\end{array}\right), \quad v_{2}=\left(\begin{array}{llll}5 & 3 & 5 & 5\end{array}\right), \quad v_{3}=\left(\begin{array}{llll}0 & 0 & 0 & 2\end{array}\right), \quad v_{4}=\left(\begin{array}{llll}0 & 9 & 5 & 4\end{array}\right)$.
[6 marks]
Further determine the dimension of the following subspaces
(1a) $\operatorname{span}\left(z_{1}, z_{2}\right)$;
(1b) $\operatorname{span}\left(m_{1}, m_{2}, m_{3}\right)$;
(1c) $\operatorname{span}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$.
[3 marks]
(2) Find the rank and the nullity of the matrix

$$
A=\left[\begin{array}{rrrr}
-1 & -1 & -1 & -2 \\
1 & 2 & 3 & 3 \\
1 & 3 & 5 & 4
\end{array}\right]
$$

[5 marks]
Further verify that the following two vectors belong to the null space of A

$$
n_{1}=\left(\begin{array}{llll}
0 & -3 & 1 & 1
\end{array}\right)^{T}, \quad n_{2}=\left(\begin{array}{llll}
1 & 1 & 0 & -1
\end{array}\right)^{T} .
$$

[4 marks]
Could the two vectors n_{1}, n_{2} form a basis for the null space of A (give your reasons)?

THE UNIVERSITY

of LIVERPOOL

4.

[20 marks]
Show that the eigenvalues λ of the matrix

$$
A=\left[\begin{array}{lll}
3 & 4 & 3 \\
4 & 3 & 3 \\
3 & 3 & 4
\end{array}\right]
$$

satisfy the cubic equation

$$
\lambda^{3}-10 \lambda^{2}-\lambda+10=0 .
$$

Furthermore,
(a) given that one eigenvalue is $\lambda=10$, find the other eigenvalues.
(b) verify that a set of eigenvectors corresponding to the eigenvalues is

$$
\frac{1}{\sqrt{6}}\left(\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right), \frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right)
$$

(c) find an orthogonal matrix P and a diagonal matrix D such that $P^{T} A P=D$.
(d) identify the form of the quadric defined by

$$
3 x^{2}+3 y^{2}+4 z^{2}+8 x y+6 x z+6 y z=1 .
$$

[4 marks]
5.
[20 marks]
(a) Let the subspace $V=\operatorname{span}\left(v_{1}, v_{2}\right)$ in R^{7} with

$$
v_{1}=\left(\begin{array}{lllllll}
2 & 0 & 0 & 5 & 0 & 5 & -1
\end{array}\right), \quad v_{2}=\left(\begin{array}{lllllll}
0 & 4 & \sqrt{7} & 11 & 0 & 0 & 0
\end{array}\right) .
$$

What is the dimension of V ?

Find the projection decomposition $v_{1}=\alpha v_{2}+v_{2}^{\perp}$, where v_{2} and v_{2}^{\perp} are orthogonal i.e. $\left(v_{2}, v_{2}^{\perp}\right)=0$.

Assuming $\left\|v_{2}^{\perp}\right\|=\sqrt{4895} / 12$, find an orthonormal basis for V.
[3 marks]
(b) Using the relationship $\|v\|^{2}=(v, v)=v^{T} v$, show that if $w, v \in R^{n}$, and $v=P w$ with $P \in R^{n \times n}$ orthogonal, then

$$
\|v\|=\|w\| .
$$

6.

[20 marks]
The Legendre polynomials $P_{n}(x)$, where $n=0,1,2, \ldots$, are orthogonal i.e.

$$
\left(P_{m}, P_{n}\right)=\int_{-1}^{1} P_{m}(x) P_{n}(x) d x= \begin{cases}0 & \text { if } m \neq n \\ \frac{2}{2 n+1} & \text { if } m=n\end{cases}
$$

The first four Legendre polynomials are

$$
P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}, \quad P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x .
$$

(a) Express the cubic polynomial $13-3 x^{2}+5 x^{3}$ in terms of Legendre polynomials.
[5 marks]
(b) Verify that the above $P_{2}(x)$ satisfies Legendre's equation for $n=2$

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0 .
$$

[5 marks]
(c) Verify (by integration) that

$$
\int_{-1}^{1}\left[P_{3}(x)\right]^{2} d x=\frac{2}{7} .
$$

(d) Find the first four coefficients in the expansion of the even function

$$
f(x)=\left\{\begin{array}{lc}
5+x, & -1<x<0 \\
5-x, & 0 \leq x<1
\end{array}\right.
$$

in Legendre polynomials.

