Math 284 Summer 2003 Examination

"Linear Algebra for Year 2 Physicists"

Full marks will be awarded for complete answers to FOUR questions. Only the best 4 answers will be taken into account. Note that each question carries a total of 20 marks that are distributed as stated.

This is a half unit course.
As agreed, the exam counts for 80% while homework for 20%.

THE UNIVERSITY
 of LIVERPOOL

1.

[20 marks]
(1) Give the definition of linear independence of r vectors $v_{1}, v_{2}, \ldots, v_{r}$ in space R^{n}.
[2 marks]
(2) Which of the following two matrices share the same eigenvalue $\lambda=4$? [4 marks]

$$
\begin{aligned}
& B_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 3 & 0 \\
4 & 0 & 3
\end{array}\right], B_{2}=\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 4 & 0 \\
3 & 0 & 2
\end{array}\right], \\
& B_{3}=\left[\begin{array}{lll}
2 & 0 & 3 \\
3 & 1 & 0 \\
0 & 0 & 4
\end{array}\right], B_{4}=\left[\begin{array}{lll}
4 & 0 & 3 \\
1 & 3 & 0 \\
2 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Hint. Expanding $\operatorname{det}(B-\lambda I)$ along a row or a column.
(3) Show that $\lambda=7$ is an eigenvalue of the matrix

$$
B=\left[\begin{array}{lllll}
9 & 0 & 3 & 0 & 7 \\
0 & 2 & 1 & 0 & 0 \\
0 & 0 & 7 & 0 & 0 \\
5 & 1 & 0 & 5 & 0 \\
7 & 0 & 0 & 1 & 7
\end{array}\right]
$$

Find another eigenvalue of B.
(4) Using the matrix method, find the general solution $x_{1}=x_{1}(t)$ and $x_{2}=x_{2}(t)$ of the coupled equations

$$
\dot{x}_{1}=4 x_{1}+2 x_{2}, \quad \dot{x}_{2}=x_{1}+3 x_{2} .
$$

[8 marks]

THE UNIVERSITY of LIVERPOOL

2.

(1) In each of the following cases, determine (giving your reason) whether the given vectors $v_{1}, v_{2}, \ldots, v_{r}$ are linearly dependent or linearly independent, and further determine the rank of the row space of matrix
[8 marks]

$$
A=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{r}
\end{array}\right)
$$

(1a) $r=2: v_{1}=(-1,-1,4), \quad v_{2}=(2,2,-8)$;
(1b) $r=2: v_{1}=(1,2,3), \quad v_{2}=(3,2,1)$;
(1c) $r=3: v_{1}=(3,2,1), \quad v_{2}=(0,3,1), \quad v_{3}=(0,0,-1)$;
(1d) $r=4: v_{1}=(3,2,1,3,5), \quad v_{2}=(0,2,1,0,4), \quad v_{3}=(3,0,1,0,5)$,

$$
v_{4}=(0,0,1,1,2)
$$

(2) Find the nullity of the matrix
[5 marks]

$$
A=\left[\begin{array}{lllll}
1 & 2 & 0 & 0 & 2 \\
2 & 3 & 0 & 0 & 5 \\
1 & 3 & 5 & 1 & 4
\end{array}\right]
$$

Further find a basis for the null space of A.

THE UNIVERSITY
 of LIVERPOOL

3.

[20 marks]
Given the following 3×3 matrix

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

(1) Show that one eigenvalue is $\lambda=4$;
(2) Find the other eigenvalues.
(3) Find a set of all eigenvectors corresponding to the three eigenvalues. [6 marks] Hence or otherise find an orthogonal matrix P such that $D=P^{-1} A P$ is diagonal.
[3 marks]
Compute $\operatorname{det}(A)$.
[3 marks]

4.

[20 marks]
The Legendre polynomials $P_{n}(x)$ where $n=0,1,2, \ldots$ are orthogonal i.e.

$$
\int_{-1}^{1} P_{m}(x) P_{n}(x) d x= \begin{cases}0 & \text { if } m \neq n \tag{4.1}\\ \frac{2}{2 n+1} & \text { if } m=n\end{cases}
$$

The first few Legendre polynomials are

$$
P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}, \quad P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x .
$$

(1) Verify that the above $P_{3}(x)$ satisfies Legendre's equation for $n=3$ [4 marks]

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0
$$

(2) Verify that equation (4.1) holds for the particular cases
(i) $m=0, n=1$; (ii) $m=n=2$.
(3) Express $5 x^{3}-7$ in terms of Legendre polynomials.
(4) Find the first two coefficients in the expansion of the following function

$$
f(x)=\left\{\begin{array}{lc}
2+x, & -1<x<0 \\
x-2, & 0 \leq x<1
\end{array}\right.
$$

in Legendre polynomials.
5.
[20 marks]
Find approximations to $y(0.2)$ for the initial value problem

$$
\frac{d y}{d x}=3 x y+2 y, \quad y(0)=\frac{1}{2}
$$

(i) using the Euler method with a steplength $h=0.1$;
[9 marks]
(ii) using the Runge-Kutta method with a steplength $h=0.2$;

$$
\begin{aligned}
w_{0} & =y_{0}=c, \\
w_{n+1} & =w_{n}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
\text { with } k_{1} & =f\left(x_{n}, w_{n}\right), \\
k_{2} & =f\left(x_{n}+\frac{1}{2} h, w_{n}+\frac{1}{2} h k_{1}\right), \\
k_{3} & =f\left(x_{n}+\frac{1}{2} h, w_{n}+\frac{1}{2} h k_{2}\right), \\
k_{4} & =f\left(x_{n}+h, w_{n}+h k_{3}\right) .
\end{aligned}
$$

Given that the exact solution is $y=y(x)=\frac{1}{2} \exp \left(\frac{1}{2} x(3 x+4)\right)$, find the absolute errors of the above two solutions?
[2 mark] Which method is more accurate?
[1 mark]

THE UNIVERSITY
 of LIVERPOOL

6.

(1) Let V be the set in R^{7} spanned by two vectors

$$
v_{1}=(2,0,0,3,0,5,-1), \quad v_{2}=(1,1,1,1,0,0,1)
$$

What is the orthogonal projection of v_{1} in the direction of v_{2} ? [2 marks] Hint. $v_{1}=v_{2}^{\perp}+\operatorname{proj}_{v_{2}}\left(v_{1}\right)=v_{2}^{\perp}+\alpha v_{2}$.

Find an orthonormal basis u_{1}, u_{2} for V.
[6 marks]
Given a third vector $v_{3}=(1,1,1,1,1,1,1)$ and based on the above vectors u_{1}, u_{2}, find constants β_{1}, β_{2} and the unique vector u_{3} orthogonal to u_{1}, u_{2} such that

$$
v_{3}=\beta_{1} u_{1}+\beta_{2} u_{2}+u_{3} .
$$

[5 marks]
(2) Find the inverse to the matrix

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 4 & -2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

and verify your answer.

