

SEPTEMBER 2006 EXAMINATIONS

Bachelor of Engineering: Year 2 Bachelor of Science: Year 2 Master of Engineering: Year 2 Master of Physics: Year 2

FIELD THEORY AND PARTIAL DIFFERENTIAL EQUATIONS

TIME ALLOWED : Two Hours

INSTRUCTIONS TO CANDIDATES

Attempt FOUR questions only. All questions are of equal value (25 marks each).

In this paper $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$ represent unit vectors parallel to the x, y and z axes respectively, and $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$.

1. (a) Given that

$$
\phi(x, y, z) = 2x^2 + y^2 + z^2 ,
$$

find $\nabla \phi$. Deduce the magnitude and the direction of the greatest rate of change of ϕ at the point $(1, 1, 0)$.

Further, calculate the outward pointing unit normal to the ellipsoid

$$
2x^2 + y^2 + z^2 = 3,
$$

at the point $(1, 1, 0)$. Use this to find the cartesian equation of the tangent plane at this point.

[15 marks]

(b) Calculate the divergence of the vector function

$$
\mathbf{v} = \frac{1}{r^2} \mathbf{r} , \ \mathbf{r} \neq \mathbf{0}
$$

where $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ and $r = |\mathbf{r}|$.

[10 marks]

2. (a) Show that for any (smooth enough) scalar field Φ

$$
\nabla \times \nabla \Phi = 0.
$$

Deduce that only one of the vector fields

$$
\mathbf{F}_1 = (6x + 2y)\hat{\mathbf{i}} + 2x\hat{\mathbf{j}} + \hat{\mathbf{k}} , \qquad \mathbf{F}_2 = (2x^3 + z)\hat{\mathbf{i}} + 3xy\hat{\mathbf{j}} + xz^2\hat{\mathbf{k}}
$$

can be expressed as the gradient of a scalar field Φ . [10 marks] (b) Evaluate the line integral

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}
$$

where

$$
\mathbf{F} = xy\hat{\mathbf{i}} + (x - 2y)\hat{\mathbf{j}}
$$

and $\mathcal C$ is the curve parameterised by equations

$$
x = t
$$

\n
$$
y = 2t + 1
$$

\n
$$
z = t3
$$

and the curve begins at $t = 0$ and ends at $t = 1$. [15 marks]

Paper Code **MATH283** Page 2 of 5 CONTINUED/

3. State Gauss's theorem for a differentiable vector field F defined over a volume τ with bounding surface S.

[10 marks]

Let S be the surface of the region τ bounded by the planes $x =, y = 0$, $z = 0, z = 3$ and $x + 2y = 6$. Sketch the region τ and use Gauss's theorem to evaluate

$$
\int \int_S (2xz\hat{\mathbf{i}} + xy\hat{\mathbf{j}} + y^2z\hat{\mathbf{k}}) \cdot \hat{\mathbf{n}} dS ,
$$

where S is the bounding surface and $\hat{\mathbf{n}}$ the outward unit normal to S. [15 marks]

4. State Stokes' theorem for a differentiable vector field F over a surface S bounded by a closed curve \mathcal{C} .

[10 marks]

Calculate the curl of the vector field

$$
\mathbf{F} = (x^3 - 3y^3)\hat{\mathbf{i}} + xy^2\hat{\mathbf{j}} + xyz\hat{\mathbf{k}}.
$$

Hence determine whether or not \bf{F} is a conservative field.

[5 marks]

Use Stokes' theorem to evaluate the line integral

$$
\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} ,
$$

where C is the closed curve in the plane $z = 0$ formed by the x-axis, the line $x = 3$ and the curve $y = x^3$.

Briefly discuss the result. [10 marks]

5. A scalar function $V(x, y)$ obeys Laplace's equation

$$
\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0\tag{1}
$$

in the rectangular region $(0 \le x \le \pi)$, $(0 \le y \le \pi)$, and is subject to the following boundary conditions

$$
V(x,0) = x, V(x,\pi) = 0,
$$
\n(2)

$$
\frac{\partial V}{\partial x}(0, y) = \frac{\partial V}{\partial x}(\pi, y) = 0.
$$
\n(3)

(a) Use separation of variables $V(x, y) = X(x)Y(y)$ to show that (1) decouples into

$$
\frac{d^2X}{dx^2} + \alpha^2 X = 0 \ , \ \alpha \neq 0 \ , \tag{4}
$$

and

$$
\frac{d^2Y}{dy^2} - \alpha^2 Y = 0 , \ \alpha \neq 0 . \tag{5}
$$

[6 marks]

From (2) and (3), deduce the boundary conditions associated with (4) and (5). Hence show that the eigenvalues of (4) and (5) are

$$
\alpha=n\ ,\ n=0,\ 1,\ 2,\cdots
$$

and their associated eigenvectors are

$$
X_n(x) = A_n \cos(nx) , Y_n(y) = C_n \frac{\sinh(n(\pi - y))}{\sinh(n\pi)} .
$$

[10 marks]

(b) Finally, show that the solution of the boundary value problem $(1)-(3)$ can be expressed as

$$
V(x,y) = \frac{\pi - y}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{n^2} \frac{\sinh(n(\pi - y))}{\sinh(n\pi)} \cos(nx).
$$

[Hint: you may assume that $\int_0^{\pi} \cos(ny) \cos(ky) dy =$ π 2 , if $n = k$, $n \neq 0$. If $n = k = 0$, the integral is π . The integral is 0 otherwise.] [9 marks]

6. The displacement $V(x,t)$ from the horizontal of a uniform elastic string of unstretched length a satisfies the wave equation

$$
\frac{\partial^2 V}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 V}{\partial t^2} \,,\tag{6}
$$

where c is a strictly positive constant (speed of wave). This equation is subject to the boundary conditions

$$
V(0,t) = V(a,t) = 0.
$$
 (7)

(a) Show, using separation of variables $V(x,t) = X(x)T(t)$, that (6) decouples into

$$
\frac{d^2X}{dx^2} + \alpha^2 X = 0 \ , \ \alpha \neq 0 \ , \tag{8}
$$

and

$$
\frac{d^2T}{dt^2} + c^2\alpha^2 T = 0 \ , \ \alpha \neq 0 \ . \tag{9}
$$

[6 marks]

Deduce that the most general solution of $(6)-(7)$ is

$$
V(x,t) = \sum_{n=1}^{\infty} B_n \sin(\alpha_n x) [C_n \cos(\alpha_n ct) + D_n \sin(\alpha_n ct)] , \alpha_n = \frac{\pi}{a} n .
$$

[5 marks]

(b) Find the constants B_nC_n and C_nD_n given the initial conditions

$$
V(x,0) = f(x), \frac{\partial V}{\partial t}(x,0) = 0, 0 \le x \le a.
$$
 (10)

[7 marks]

Show that the solution of the boundary value problem (6)-(7) and (10) can be expressed as

$$
V(x,t) = \frac{2}{a} \sum_{n=1}^{\infty} \left(\int_0^a f(x) \sin \frac{n\pi x}{a} dx \right) \sin \frac{n\pi x}{a} \sin \frac{n\pi ct}{a} . \tag{11}
$$

[Hint: you may assume that $\int_0^a \sin\left(\frac{\pi nx}{a}\right)$ a $\sin\left(\frac{\pi mx}{\pi}\right)$ a $\Big) dx =$ a 2 , if $n = m, n \neq 0$, and 0 otherwise.] [7 marks]