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INSTRUCTIONS TO CANDIDATES

Attempt FOUR questions only. All questions are of equal value (25 marks
each).

In this paper î, ĵ and k̂ represent unit vectors parallel to the x, y and z axes
respectively, and r = xî + yĵ + zk̂.
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1. (a) Given that
φ(x, y, z) = 2x2 + y2 + z2 ,

find ∇φ. Deduce the magnitude and the direction of the greatest
rate of change of φ at the point (1, 1, 0).

Further, calculate the outward pointing unit normal to the ellip-
soid

2x2 + y2 + z2 = 3 ,

at the point (1, 1, 0). Use this to find the cartesian equation of the
tangent plane at this point.

[15 marks]

(b) Calculate the divergence of the vector function

v =
1

r2
r , r 6= 0

where r = x̂i + yĵ + zk̂ and r = |r|.
[10 marks]

2. (a) Show that for any (smooth enough) scalar field Φ

∇×∇Φ = 0 .

Deduce that only one of the vector fields

F1 = (6x + 2y)̂i + 2xĵ + k̂ , F2 = (2x3 + z)̂i + 3xyĵ + xz2k̂

can be expressed as the gradient of a scalar field Φ. [10 marks]

(b) Evaluate the line integral

∫

C

F · dr

where
F = xyî + (x − 2y)̂j

and C is the curve parameterised by equations

x = t

y = 2t + 1

z = t3

and the curve begins at t = 0 and ends at t = 1. [15 marks]
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3. State Gauss’s theorem for a differentiable vector field F defined over a
volume τ with bounding surface S.

[10 marks]

Let S be the surface of the region τ bounded by the planes x =, y = 0,
z = 0, z = 3 and x + 2y = 6. Sketch the region τ and use Gauss’s
theorem to evaluate

∫ ∫

S

(2xzî + xyĵ + y2zk̂) · n̂ dS ,

where S is the bounding surface and n̂ the outward unit normal to S.
[15 marks]

4. State Stokes’ theorem for a differentiable vector field F over a surface
S bounded by a closed curve C.

[10 marks]

Calculate the curl of the vector field

F = (x3 − 3y3)̂i + xy2ĵ + xyzk̂ .

Hence determine whether or not F is a conservative field.
[5 marks]

Use Stokes’ theorem to evaluate the line integral

∮

C

F · dr ,

where C is the closed curve in the plane z = 0 formed by the x-axis,
the line x = 3 and the curve y = x3.

Briefly discuss the result. [10 marks]
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5. A scalar function V (x, y) obeys Laplace’s equation

∂2V

∂x2
+

∂2V

∂y2
= 0 (1)

in the rectangular region (0 ≤ x ≤ π), (0 ≤ y ≤ π), and is subject to
the following boundary conditions

V (x, 0) = x , V (x, π) = 0 , (2)

∂V

∂x
(0, y) =

∂V

∂x
(π, y) = 0 . (3)

(a) Use separation of variables V (x, y) = X(x)Y (y) to show that (1)
decouples into

d2X

dx2
+ α2X = 0 , α 6= 0 , (4)

and
d2Y

dy2
− α2Y = 0 , α 6= 0 . (5)

[6 marks]

From (2) and (3), deduce the boundary conditions associated with
(4) and (5). Hence show that the eigenvalues of (4) and (5) are

α = n , n = 0, 1, 2, · · ·

and their associated eigenvectors are

Xn(x) = An cos(nx) , Yn(y) = Cn

sinh(n(π − y))

sinh(nπ)
.

[10 marks]

(b) Finally, show that the solution of the boundary value problem
(1)-(3) can be expressed as

V (x, y) =
π − y

2
+

2

π

∞
∑

n=1

(−1)n − 1

n2

sinh(n(π − y))

sinh(nπ)
cos(nx) .

[Hint: you may assume that
∫

π

0

cos(ny) cos(ky)dy =
π

2
, if n = k,

n 6= 0. If n = k = 0, the integral is π. The integral is 0 otherwise.]
[9 marks]
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6. The displacement V (x, t) from the horizontal of a uniform elastic string
of unstretched length a satisfies the wave equation

∂2V

∂x2
=

1

c2

∂2V

∂t2
, (6)

where c is a strictly positive constant (speed of wave).
This equation is subject to the boundary conditions

V (0, t) = V (a, t) = 0 . (7)

(a) Show, using separation of variables V (x, t) = X(x)T (t), that (6)
decouples into

d2X

dx2
+ α2X = 0 , α 6= 0 , (8)

and
d2T

dt2
+ c2α2T = 0 , α 6= 0 . (9)

[6 marks]

Deduce that the most general solution of (6)-(7) is

V (x, t) =
∞
∑

n=1

Bn sin (αnx) [Cn cos (αnct) + Dn sin (αnct)] , αn =
π

a
n .

[5 marks]

(b) Find the constants BnCn and CnDn given the initial conditions

V (x, 0) = f(x) ,
∂V

∂t
(x, 0) = 0 , 0 ≤ x ≤ a . (10)

[7 marks]

Show that the solution of the boundary value problem (6)-(7) and
(10) can be expressed as

V (x, t) =
2

a

∞
∑

n=1

(

∫

a

0

f(x) sin
nπx

a
dx

)

sin
nπx

a
sin

nπct

a
. (11)

[Hint: you may assume that
∫

a

0

sin
(

πnx

a

)

sin
(

πmx

a

)

dx =
a

2
, if

n = m, n 6= 0, and 0 otherwise.] [7 marks]
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