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INSTRUCTIONS TO CANDIDATES

Attempt FOUR questions only. All questions are of equal value.

In this paper i, j and k represent unit vectors parallel to the x, y and z axes
respectively.

Comments:

There are only FIVE questions in this exam paper which was set in september
2002 (resit). Note that you will have SIX questions in January 2005, but you
should make an attempt to FOUR questions only. The first question of next
january exam looks similar to question 1 of the present paper. Question 2(a)
of next exam is analogous to question 2(a) of the present paper. The next
two questions of january exam look like questions 2(b) and 3 of the present
paper. Finally, the last two questions of january exam look like questions 4
and 5 of the present paper.
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1. (a) [This exercise is a really good training for exercise 1 of January
2005 exam. Do not forget to revise the notion of directional deriva-
tive as well.]

Given that
$x,y,2) = a® +6y° +2°
its gradient Vo is :

V¢:<8<b 26 9

8_1" 6—y, &) = (21’, 12y,22) .

The unit outward normal to the ellipsoid ¢(x,y,z) = 22 + 6y* +

2? = 6 at a general point (z,y, z) is (note that the sign is positive)
Vo  (27,12y,22)  (z,6y,2)

| Vo | ArZ+144y? + 422 /o2 + 362+ 22

n=

At point a = (1,1, 1) it can be simplified as:

(1,6,1)
TR

Hence, the cartesian equation for the tangent plane which touches
the ellipsoid at that point is given by

n=

(r—a)-n=0
(1,6,1)

(I‘—(l,l,l))- \/@
(x—1)+6(y—1)+(z—1) =

=0

Or
r+06y+z2=28.

(b) We first write
V- (r’r) = (0/0x,0/0y.0/0z) - (rQ(x,y,z))
O oy, Oy o, 0/ 4
= %(I'T)+a—y(y7“)+a(27")

= 0 <T2)+T28—z+y% <T2)+T2%

- Yo oz Vo By
0 /5 50z
+Z% (T‘ ) + & .
Now, we note that
%(ﬁ +y* 4 2%) =22
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A similar result holds for the partial derivatives with respect to y
and z.

Therefore, we obtain
V-(r?r) = 202 +r? + 2y +r2 + 222 +1°
= 2r? 4 3p?

= 52,
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2. [The part (a) of this exercise looks like the part (a) of exercise 2 of
January 2005 exam. The part (b) of this exercise looks like the part
(a) of exercise 3 of January 2005 exam. The best way to prepare the
parts (b) of exercises 2 and 3 of January 2005 exam is to revise the
exercises on conservative fields (vector fields whose curl is zero) and
double integrals over circle and ellipsis (polar coordinates).]

(a) We want to evaluate the line integral
/ F-dr,
c

F = (2zy + 2y2)i + (2 4 22)j + 2yk
and the curve C is the straight line starting at the point (0,0, 0)
and finishing at (1,1,1).
For this, we first parametrise the path C in 3D space by the equa-
tions

where

where ¢ starts at 0 and ends at 1.
We then need to express the vector field F in terms of the param-

eter t A ) A
F(t)= 22 + )i+ (£ +1*)j + t’k .
Further, if we consider the parametrised vector
r(t) = 2(t)i +y(t)j + 2(t)k = ti + 1] + tk

its total derivative writes as

dr . 4+ &
— =i+j+k.
7 1+ ]+

Altogether, the line integral of the vector field F over the path C
is expressed as

1
/F-dr _ /F-@dt
c 0 dt

1
= / (26 + 1,262, £7) - (1,1,1) dt
0

1
- /0 (5t2+t3) dt
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(b) Let us state Gauss’s theorem for a differentiable vector field F
defined over a volume 7 with bounding surface S.
Gauss’s (or divergence’s) theorem :
Given a volume 7 which is bounded by a piecewise continuous
surface S, and a vector function F which is continuous and has
continuous partial derivatives in 7, then

///TV-FdT:%qF-dS. (1)

Notice that the surface integral S has been drawn with a circle
around it, in order to indicate that this surface is closed, i.e. that
it entirely encompasses the volume 7. Also, dS is defined as the
product of a small area (let’s say dxdy) by the unit outward normal
n to the surface S.

The region 7 is the hemi-spherical volume which is enclosed by
the surface 22 + y% 4+ 22 = 9 and the plane z = 0, and lies above
the (z,y) plane. Hence, it looks as follows (a hat!): Using Gauss’s

theorem, the surface integral can be expressed as
7{ [21:1 — 3$2yz2j + :L’ZZBIA{} -dS
s

= // i ((%, (%,%) . [2351— 3x2yz2j+$223f< dr

= ///(2 — 32%2% 4 32%2%) dr

= 2 (Volume of region )
4733

375 367
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3. [Same spirit as part (a) of exercise 4 in January 2005 exam. The best
way to prepare the part (b) of exercise 4 set in January, is to look at
the exercise on Stokes’s theorem in set 5 of lecture notes.|

Let us first state the Stokes’ theorem for a differentiable vector field F
defined over a surface S bounded by a closed curve C.

Stokes’ theorem:

Given a surface S which is bounded by a piecewise continuous curve C,
and a vector function F which is continuous and has continuous partial
derivatives on S, then

//S(VXF)-dS:]iF-dr 2)

Now, the curl of the vector field
F= 5yi+4$j+3zf< .
writes as

VxF; = (0-0)i—(0—-0)j+k(4-5)
- k.

Let us now evaluate the surface integral

//S(VXF)-dS

where S is the plane surface bounded by the circular path
P24yi=1, 2=2.

which is depicted on the figure below so that the unit normal n to the
surface S is simply the vector of the canonical basis k (we deduce the
orientation of n from the thumb rule). Thus, an infinitesimal element

dS of orientable surface S writes as dS = ndzdy = Rdxdy and we end

up with
//S(VxF).ds = /A(_R)'kdxdyz—/[gdxdy
= — (area of 9)
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Let us now evaluate the path integral

/F-dr,
C

where C is the boundary of the surface S above, traversed in the coun-
terclockwise direction.

First of all we use the parametrisation

r = cost
= sint
z = 2
with
0<t<2m .
Then R X R
F(t) = 5sinti + 4 costj + 6k |,
also X R X
r(t) = costi+ sintj + 2k
hence
dr o . .
i —sinti + costj + 0k .

Therefore, the integral is
2
%F -dr = / (—5sin2t+4cos2t) dt
C 0
2m
= / (4 — 9sin? t) dt
0
o ] — it
_ ( 4dt—9/ ﬂdt)
0 0 2
. 2
9 2t
_ - ? lt _ sin( )]
0

2 2
= 81 —97r=—7. (3)

Hence, we have checked that

//S(VXF)-dS:—W:}({F-dr. (4)
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4. [The ezercise provides a good training for exercise 5 of January 2005
exam. You should ALSO look at the exercise on Laplace’s equation
given in the set 7 of lecture notes. Do not forget that you should attempt
ONLY FOUR exercises at the exam in january 2005. If you find it hard
to work with hyperbolic sine and cosine functions, have a look at the set
6 of lecture notes (you may skip this question and focus on question 5
which only involve sine, cosine and exponential functions. )]

Let us show by direct substitution that the general solution to the
differential equation

d*X 9
W —a‘X = 0, (6] 7A O,
is
X = Acosh(ax) + Bsinh(ax) .
First, we note that

——— , sinh(az) = ————
2 2

cosh(az) =
From this we see that

— cosh(ax) = asinh(azx) , . sinh(ax) = a cosh(ax) .
T

dx
Therefore, it follows that
a;—X = Aasinh(az) + Ba cosh(azx) .
x
Altogether, we obtain
2X 2
a;? = % (A cosh(az) + B sinh(ax))

d
= o (A sinh(az) + B COSh(Oz:E))
= o (A cosh(az) + B sinh(ax))
= o’X.

Now, we want to solve Laplace’s equation

P*V 0PV
within the region 0 < x < 7, 0 < y < 7 and with the boundary
conditions
V(z,0) = V(x,m)=0, (6)
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Firstly we try a solution of the form
V(z,y) = X(2)Y (y)

There’s no guarantee that a solution of this form will exist, let alone
satisfy all the boundary conditions, however if we can find one which
does then by uniqueness it must be the correct solution.

Substituting this trial form of the solution (the german word is ansatz)
into Laplace’s equation, we obtain

5 (K@Y ) + 55 (XY () =0 .

r
o X"(@Y () + Y ()X () =0,
where I've used the primes (“’”) to indicate the full derivative with
respect to the relevant variable.
We can re-arrange this equation into the form
X'(z)  Y'(y)
X(x)  Y(y)

=0

and so we've separated the variables x and y into different parts of the
differential equation. In other words, we've turned an equation with
both variables z and y into an equation which is a function of x plus a
function of y.

Now the only way you can have two functions of different variables
adding together to give zero is if they’re both equal to a constant.

That is,

X/I T Y//

Xw) L V) N

X(x) Y(y)
Here I've written the constant as ‘da?’ rather than, say ‘e’ or ‘x’ in
order to emphasise that there is a definite choice of sign to be made
here. The constant can, at this stage, be either poisitive or negative.
If the constant is positive (we choose +a?) then we find that we have
to solve the pair of ordinary differential equations

X'@) e Y

X T Yy T ®)

This choice will result in a combination of cosh and sinh functions
for X (z), whereas Y (y) will be made up of a combination of cos and
sin functions. If, however, we choose the constant to be negative (we
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choose —a? in (8)), then the differential equations which we end up
having to solve are
X"(x) > Y'(y) 2
=—a° , ——~=+a" . 10
X(a) V) .
This choice results in a combination of cos and sin functions for X (x),
and Y (y) is then made up of cosh and sinh functions.

It looks like the choice of sign of o will have a radical effect on the
solution to the problem. Clearly one choice is ‘right’, and the other is
‘wrong’. How do we tell which is which?

The answer is that one of the choices will be incapable of satisfying the
boundary conditions. We saw in the last section that any combination
of sinh’s and cosh’s will be unable to make up a function which shrinks
to zero at two points. The boundary conditions for this problem imply
that Y (0) = Y(7) = 0 and so we cannot end up with a solution of the
form Y (y) = A cosh(ay)+ Bsinh(ay) - this would imply that Y (y) = 0.
(If you don’t believe this, then you should go ahead and try it. Even
if you make the ‘wrong’ choice for a? then you’ll find that after a few
lines you’re unable to satisfy the first of the boundary conditions. The
choice for the sign of a? isn’t a drastic decision, on which the whole
method hangs. If you've made a mistake then you’ll know it pretty
soon).

When in doubt, then, we can look for places where the function vanishes
at two points. In this case we notice that the solution vanishes when
y =0 and y = L. We know then that the function Y (y) must satisfy
the differential equation

A’y
d—y2 = —Oé2Y (11)

(if it didn’t, then it would have to satisfy the other equation, which
means that it would be zero) and the function X (z) must satisfy the
differential equation
d>X
dz?

We know that the general solution to (11) is

=ao’X (12)

Y (y) = Acos(ay) + Bsin(ay) , (13)

and the boundary conditions, which come from (6), give us the bound-
ary conditions for Y:

Y(0)=Y(r)=0 . (14)
Substituting Y (0) = 0 into the general solution, we obtain
0=Acos0+ Bsin0 ,
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or

A=0 .
Substituting the second boundary condition y(7) = 0, we obtain
0 = Bsinar
which implies that
ar=nm, wheren=0,1,2,...

that is, @« = n where n is some positive integer. We can now write
down the eigenfunctions of the differential equation (11). These are

Y,(y) = B, sin(nz) (15)

and there are an infinity of these, one for each value of n.

We now turn to the solution of the second differential equation (12).
The general solution to this equation is

X(x) = Ccosh(ax) + D sinh(ax) (16)

and we now attempt to evaluate as much of this as possible, given the
information we have. The boundary conditions which we wish to apply
are

V0.y)=0 , V(ry) = —isin(?)y) (17)

The boundary condition on the right involves y, and so isn’t much help,
since it doesn’t allow us to say much about the function X (z) which
depends on the variable x only. The first boundary condition doesn’t
depend on y at all, so we can say that this implies

X(0)=0 .

If we look back at the properties of sinh and cosh (detailed in the last
chapter) then we notice that cosh(0) = 1 always, whereas sinh(0) = 0.
This means that there can be no cosh functions at all in the solution; if
they were there, then the function X (x) wouldn’t vanish when x = 0.
The solution to the second differential equation is then

X(x) = Dsinh(ax) . (18)

Or, since we already have a restriction on « (it must be equal to some
integer n) we can write

X (x) = Dsinh(nz) . (19)
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Note that we haven’t used ‘symmetry’ properties or anything like that
to eliminate the cosh functions. The requirement that X (x) vanish
when x = 0 was enough.

We now combine the two parts of our solution:

Va(z,y) = X(2)Ya(y)
= Dsinh(nz)B, sin(ny)
= C,sinh(nz) sin(ny) (20)

where we have combined the two constants D and B,, into a new con-
stant we we call C,. Again there are an infinite number of these solu-
tions, one for each value of n. By the principle of superposition we can
add any of these together, so the general solution is

V(z,y) =Y C,sinh(nz)sin(ny) (21)
n=0
By picking the right constants C,, we can ensure that the last remaining
boundary condition is satisfied. This is

— sin(3y) = V(r.y)

So we require that

—i sin(3y) = Y _ C, sinh(n) sin(ny) (22)
n=0

In this case the choice is pretty simple: We know that all the sin(nz)
functions are orthogonal (we’ll look at a more strict definition of this in
the next example), and so all the sin terms on the left and right hand
sides have to match up. The only function appearing on the left-hand
side of (22) is sin(3y), and so all the C,, terms on the right-hand side
have to be zero except for C'3, which is given by

1
1= C5 sinh(37) (23)
In other words,
Ll o n=3
C,={ 4smh@3m) o "7 (24)
0 for n#3

The full solution to the differential equation is then

Viz,y) = iC’n sinh(nz) sin(ny)

n=0
1 1 ) .
=~ Iemn(en) “nh(3o)sin(3y) - (25)
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5. [The exercise provides a good training for exercise 6 of January 2005
exam. You should ALSO look at the exercise on the Heat equation
given in the set 7 of lecture notes. Do not forget that you should attempt
ONLY FOUR exercises at the exam in january 2005. This exercise only
inwvolves sine, cosine and exponential functions, so it may be regarded
as easier than the exercise 4 for some of you.)]

(a) To solve the equation

% = /@% (26)
we try a solution of the form
u(z,t) = X(x)T(t) (27)
Substituting (27) into (26) leads to
X(2)T'(t) = kX" (2)T(t) , (28)
which can be recast as
X"(x) _ 1T'(t) (29)

X(z) kT’
[Here, we have used the fact that X(z) and T(t) are # 0, since we are

looking for non-trivial solutions of the spectral problems in X and T.]

Hence, we must solve

X'w) o, 1T
X(z) "k T(t) ‘ (30)

[Anticipating the exponential solution in T (t), we have picked a negative
separation constant —a?, so that the solution remains finite when t
tends to infinity.]
To find the eigenvalues and eigenfunctions of the boundary value prob-
lem 2y
-I5+&X=ﬂ, X(0)=X(m)=0 , (31)
T

we proceed as follows:

We first notice that the general solution to:

EX
W‘I—QX:O,

X(z) = Acos(ax) + Bsin(ax) .

When x = 0, this simplifies to:

X (0) = Acos(a0) + Bsin(al) = A
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which thanks to boundary condition X (0) = 0 implies

A=0.

Now, looking at the other extremity of the bar (X (7) = 0) gives:
Bsin(ar) =0.
So that we are left with:
a=a,=n,n=0 1, 2,...
Thus, the eigenvalues of the spectral problem (31) look like:
a,=n,n=0,1, 2, .. (32)
and the associated eigenfunctions can be written as:
Xn(x) = By sin(ay,x) .

The eigenfunctions associated with the first ordinary differential equa-
tion in (30) subject to boundary conditions X (0) = X () = 0 are

Xn(x) = By sin(nx)
The second equation in (30) is
T'(t) = —a*kT(t)
which has the general solution
T, (t) = C, exp(—a2kt) .

(b) We can write the general solution u(zx,t) as

u(z,t) = X ()T, (1)

By, sin (nx) C,, exp(—a2kt)

-
-

- g [Bn sin (nz)

x C, exp (—n%t)] ) (33)

where in the last equation we have used (32).
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We know that at t =0

u(z,0) = i

(—1)" sin(mx) ‘

m=1 m
We thus deduce from (33) that
[e'e] _1 m _- o0
> (=1)" sin(ma) =Y B, Cysin(nz) . (34)
m=1 m 0

We note that for n = 0, sin(nz) is zero, thus the series on the right side
starts at n = 1. In this case the choice of coefficients is pretty simple:
We know that all the sin(nz) functions are orthogonal (we’ll look at a
more strict definition of this in the next example), and so all the sin
terms on the left and right hand sides have to match up. The functions
appearing on both sides of (34) do match for any sin(nz), and so

B,C, = (=" (35)

The full solution to the differential equation is then

V(z,y) = > B,C, sin(na)e™"

n=1
© (—1)"sin(ngz)e " "t
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