
Answers for Exam of January 2006

[M283 - Field theory and PDEs]

1. (a) [Standard exercise, similar to lectures and tutorials.]

Gradient:

∇φ =

(

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)

= (2x, 4y, 2z) .

2 marks

Directional derivative of Φ:

DbΦ = ∇Φ · b

| b | = (2x, 4y, 2z) · (1, 0, 0)√
1

.

2 marks

At point a = (2, 1, 1):

DbΦ(a) = ∇Φ(a) · b

| b | = 4 .

1 marks

Normal to ellipsoid:

n̂ =
∇φ

| ∇φ | =
(x, 2y, z)√

x2 + 4y2 + z2
.

3 marks

At point a = (2, 1, 1):

n̂ =
(2, 2, 1)√

9
.

1 mark

Cartesian equation of tangent plane:

(r − a) · n̂ = 0

2(x − 2) + 2(y − 1) + (z − 1) = 0

3 marks

Or
2x + 2y + z = 7 .

1 mark

(b) [Bookwork i.e similar to lectures, tutorials and homeworks].

From definition of curl

∇× (
v

φ
) =

(

∂

∂x
,

∂

∂y
,

∂

∂z

)

×
(

φ−1vx, φ
−1vy, φ

−1vz

)

(1)

1



1 mark

So that,

∇×
(

v

φ

)

= φ−2

{

φ

[(

∂vz

∂y
− ∂vy

∂z

)

î −
(

∂vz

∂x
− ∂vx

∂z

)

ĵ

+

(

∂vy

∂x
− ∂vx

∂y

)

k̂

]

+

[(

vy
∂φ

∂z
− vz

∂φ

∂y

)

î

−
(

vx
∂φ

∂z
− vz

∂φ

∂x

)

ĵ +

(

vx
∂φ

∂y
− vy

∂φ

∂x

)

k̂

]}

=
φ∇× v + v ×∇φ

φ2
=

φ∇× v −∇φ × v

φ2
(2)

3 marks

[This is a standard exercise on gradient and curl discussed in lectures (see chapter
3 of lecture notes) and tutorials 2 and 3.] We check that

∇
(

1

r

)

=

(

∂

∂x
,

∂

∂y
,

∂

∂z

)

(x2 + y2 + z2)
−1/2

= − 1

r3
r , r 6= 0 ,

2 marks

and

∇(r3) =

(

∂

∂x
,

∂

∂y
,

∂

∂z

)

(x2 + y2 + z2)
3/2

= 3rr ,

1 mark

as well as

∇× (r) =

(

∂

∂x
,

∂

∂y
,

∂

∂z

)

× (x, y, z)

= 0 ,

1 mark

where r = x̂i + yĵ + zk̂ and r = |r|.

[Standard exercise] Therefore, we end up with

∇×∇
(

1

r

)

= ∇×
(

− r

r3

)

= −r3(0) − 3rr× r

r6
= 0 , r 6= 0 .

3 marks

In fact, this result holds for any smooth scalar field φ as seen during the lectures
[see also exercise 2]. 1 mark
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2. (a) [Standard exercise, similar to lectures and tutorials.]

Line integral of F over C1:

∫

C1

F · dr =
∫ 2π

0
F · dr

dt
dt

=
∫ 2π

0

(

2 cos t + t, cos t + 2t sin2 t, 2t2 sin t
)

· (−sint, 1, cos t) dt

=
∫ 2π

0
t2 sin(2t) dt +

∫ 2π

0
t dt−

∫ 2π

0
t sin(t) dt

= 2π .

7 marks

(b) Using

∇×∇φ =

(

∂2

∂y∂z
φ − ∂2

∂z∂y
φ

)

î

−
(

∂2

∂x∂z
φ − ∂2

∂z∂x
φ

)

ĵ

+

(

∂2

∂x∂y
φ − ∂2

∂y∂x
φ

)

k̂ ,

3 marks

and
∂2

∂y∂z
=

∂2

∂z∂y
,

we conclude
∇×∇φ = 0 .

1 mark

[Standard exercise, cf. tutorial 2.]

Curl of F
∇× F = (4yz − 4yz)̂i − (0 − 0)̂j + (1 − 1)k̂ = 0 . (3)

5 marks

We deduce that F can be expressed as the gradient of a scalar field φ. Hence,

F = (2x + y)̂i + (x + 2yz2)̂j + 2y2zk̂ = ∇φ .

1 mark

So that

φ = x2 + xy + f1(y, z)

φ = xy + y2z2 + f2(x, z)

φ = y2z2 + f3(x, y) ,
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2 marks

where f1, f2 and f3 are three arbitrary functions which we need specify.

By inspection, we end up with

φ = x2 + xy + y2z2 + C ,

2 marks

where C is an arbitrary constant.

(c) Line integral of F over C2:

∫

C2

F · dr =
∫ 2π

0
F · dr

dt
dt

=
∫ 2π

0
(2 + t, 1, 0) · (0, 1, 0) dt

=
∫ 2π

0
dt

= 2π .

3 marks

[Bookwork: Gradient theorem and conservative fields.]

Since F derives from a scalar field φ, the line integrals in (a) and (c) can be
reformulated as

∫

C

F · dr =
∫

C

∇φ · dr

=
∫ 2π

0

dφ

dt
dt

= φ(1, 2π, 0)− φ(1, 0, 0)

= 2π .

1 mark
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3. [Bookwork, similar exercises were set in lectures, tutorials and homeworks.

Let us state Gauss’s theorem for a differentiable vector field F defined over a volume
τ with bounding surface S.
Gauss’s (or divergence’s) theorem :
Given a volume τ which is bounded by a piecewise continuous surface S, and a vector
function F which is continuous and has continuous partial derivatives in τ , then

∫

τ
∇ · Fdτ =

∮

S
F · dS . (4)

Notice that the surface integral S has been drawn with a circle around it, in order
to indicate that this surface is closed, i.e. that it entirely encompasses the volume τ .
Also, dS is defined as the product of a small area (let’s say dxdy) by the unit outward
normal n̂ to the surface S.

5 marks

The exercise now splits in two sections (which can be independently addressed).
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Figure 1: A rectangular box over which we apply Gauss’s theorem.

(a) Divergence of F:
∇ · F = 1 + 4y + 3 .

3 marks

Volume integral of divergence of F:

∫

τ
(1 + 4y + 3)dτ =

∫ 1

−1
dx
∫ 2

−2
dy
∫ 1

−1
dz(4 + 4y) = 32

∫ 1

−1
dx = 64 . (5)

3 marks

By Gauss’s theorem, we deduce that

∮

S
F · dS =

∫

τ
(∇ · F)dτ = 64 ,
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where τ is the interior of S.

Let us now check that this is indeed what we would get from the direct evaluation
of the surface integral of F over the surface S. For this, we decompose S into six
surfaces S1, ..., S6 oriented by unit normals n1, ..., n6 as defined in Figure 1.

Let us first evaluate:
∫

S1

F · dS =
∫

S1

(x, 2y2, 3z) · (1, 0, 0) dS

=
∫

Ayz

x
dydz

(1, 0, 0) · î

= x
∫ 2

−2
dy
∫ 1

−1
dz

= 8 ,

since x = 1 on the surface S1. 1 mark

Similarly, we find

∫

S2

F · dS = −8 , and
∫

S3

F · dS = 32 . (6)

since x = −1 on the surface S2 and y = 2 on S3. 2 marks

Also, we have

∫

S4

F · dS = 32 ,
∫

S5

F · dS = 24 , and
∫

S6

F · dS = −24

since y = −2 on the surface S4, z = 1 on S5 and z = −1 on S6. 3 marks

Altogether, we obtain

∮

S
F · dS =

6
∑

i=1

∫

Si

F · dS

= 64 .

We have therefore checked Gauss’s theorem on this example. 1 mark

(b) Applying Gauss’s theorem, we derive that

∮

S
r · dS =

∫

τ
∇ · r dτ

= 3
∫

τ
dτ = 3V ol(τ) . (7)

7 marks
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4. [bookwork (same spirit as exercise 3).]

Let us first state the Stokes’ theorem for a differentiable vector field F defined over a
surface S bounded by a closed curve C.
Stokes’ theorem:
Given a surface S which is bounded by a piecewise continuous curve C, and a vector
function F which is continuous and has continuous partial derivatives on S, then

∫ ∫

S
(∇× F) · dS =

∮

C

F · dr (8)

5 marks

The exercise now splits into two sections (which can be independently addressed).

(a) Curl of F:

∇× F =
(

z2 + x
)

î − (0 − 0) ĵ + k̂ (−z − 3) . (9)

3 marks

Unit normal n̂ to the surface S (see Figure 2):

n̂ =
∇(x2 + y2 − 2z)

| ∇(x2 + y2 − 2z) | =
(x, y,−1)√
x2 + y2 + 1

.

(we deduce the orientation of n̂ from the thumb rule). 1 mark

x

y

z

2 C

2−2

−2
n

2

S

A

Figure 2: The surface of the paraboloid over which we apply Stokes’ theorem.

Thus, an infinitesimal element dS of orientable surface S writes as dS = n̂
dxdy

| n̂ · k̂ |
and we end up with

∫ ∫

S
(∇× F) · dS =

∫ ∫

A
(∇× F) · n̂ dxdy

| n̂ · k̂ |

=
∫ ∫

A



x

(

x2 + y2

2

)2

+ x2 +
x2 + y2

2
+ 3



 dxdy ,
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since z = (x2 + y2)/2 on the surface of the paraboloid.

Note that here, A is the orthogonal projection of S onto the (xy)-plane as depicted
on Figure 2. 3 marks

Using polar coordinates, we obtain

∫ ∫

S
(∇× F) · dS =

∫ θ=2π

θ=0

∫ r=2

r=0

[

(r cos θ)(r4/2)

+ r2 cos2 θ + r2/2 + 3
]

rdrdθ = 20π .

2 marks

Now, the integral of F over C is

∮

C

F · dr =
∫ 0

2π

(

−12 sin2 t − 8 cos2 t
)

dt = 20π . (10)

2 marks

Hence, we have checked that

∫ ∫

S
(∇× F) · dS = 20π =

∮

C

F · dr . (11)

(b) Applying Stokes’ theorem, we obtain

∮

C

∇φ · dr =
∫ ∫

S
(∇×∇φ) · dS = 0 , (12)

since ∇×∇φ = 0 for any (smooth) scalar function φ (see also ex. 2(b)).

7 marks
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5. [Standard exercise on Laplace equation i.e. classwork and homework.]

(a) We try a solution which has the form

V (x, y) = X(x)Y (y) , (13)

which we can rearrange to get

X ′′(x)

X(x)
+

Y ′′(y)

Y (y)
= 0 . (14)

2 marks which leads to (since Y (0) = Y (L) = 0)

d2X

dx2
= +α2X(x) , (15)

d2Y

dy2
= −α2Y (y) . (16)

4 marks

The general solution to the differential equation (16) is

Y (y) = C cos(αy) + D sin(αy) (17)

2 marks

Using Y (0) = Y (L) = 0 we are left with

α := αn = nπ/L where n = 0, 1, 2, . . . (18)

1 mark

We now have the eigenvectors of the differential equation (16):

Yn(y) = Dn sin(nπy/L) , where n = 0, 1, 2, . . . (19)

1 mark

The general solution to the first differential equation (15) is

X(x) = A cosh(αx) + B sinh(αx) (20)

2 marks

Using X(0) = 0 , X(L) = V0 we find that the eigenvectors of (15) are

Xn(x) = Bn sinh(αnx) . (21)

2 marks

9



(b) Combining the functions of x and y, we obtain

Vn(x, y) = En sinh(nπx/L) sin(nπy/L) , (22)

since we already know αn = nπ/L from (18).

1 mark

We now use the principle of superposition to write the general solution:

V (x, y) =
∞
∑

n=0

En sinh(nπx/L) sin(nπy/L) . (23)

1 mark

Now if we pick the coefficients En correctly then we can satisfy the final boundary
condition, which is

V (L, y) = V0 .

So we want to collect coefficients En such that

V0 =
∞
∑

n=1

En sinh(nπ) sin(ny) . (24)

1 mark

We now multiply equation (24) by the function sin(kπy/L), and integrate it be-
tween 0 and L:

V0

∫ L

0
sin(kπy/L)dy = Ek sin(kπ)

L

2
, (25)

1 mark

where we have used the orthogonality relation (see Hint) to eliminate all terms
but one from the infinite sum.

This leads to

Ek =
2V0

πk

1 − cos(kπ)

sinh(kπ)
. (26)

1 mark

We notice that E2k = 0 and

E2k−1 =
4V0

π

1

(2k − 1) sinh((2k − 1)π)
.

1 mark

Hence we conclude that

V (x, y) =
∞
∑

n=1

En sinh(nπx/L) sin(nπy/L)

=
4V0

π

∞
∑

n=1

sinh((2n − 1)πy
L

)

(2n − 1) sinh((2n − 1)π)
sin((2n − 1)

πx

L
) . (27)

2 marks
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(c) [Aim: To derive the famous Maximum Principle] At the center of the square, the
above expression reduces to

V (L/2, L/2) =
4V0

π

∞
∑

n=1

sinh((2n − 1)π
2
)

(2n − 1) sinh((2n − 1)π)
sin((2n − 1)

π

2
)

=
2V0

π

∞
∑

n=1

(−1)n−1

(2n − 1) cosh((2n − 1)π/2)
, (28)

where we have used that sinh(2s) = 2 sinh s cosh s.

3 marks

Since π/4 = 1 − 1/3 + 1/5 − 1/7 + ... and cosh s ≥ 1, it follows that

0 ≤ V (L/2, L/2) ≤ V0

2
≤ V0 .

1 mark

Nota Bene: This result holds true everywhere within the square thanks to the so-
called maximum principle: The solution of Laplace equation takes its minimum
and maximum values on the boundary of the domain.
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6. [Standard exercise on the wave equation, classwork and homework.]

(a) The sepraration of variables leads to

X ′′(x)

X(x)
=

1

c2

T ′′(t)

T (t)
. (29)

2 marks

which by virtue of the boundary conditions X(0) = X(a) = 0 gives

d2X

dx2
= −α2X(x) , (30)

d2T

dt2
= −α2T (t) . (31)

4 marks

The general solution of (30) is:

X(x) = A cos(αx) + B sin(αx) . (32)

1 mark

Using X(0) = 0 and X(a) = 0 gives us a restraint on α:

0 = B sin(αa) .

1 mark

That is,

α =
nπ

a
where n = 0, 1, 2, . . . (33)

1 mark

We now have the eigenvalues of the differential equation (30):

Xn(x) = Bn sin
(

nπx

a

)

, where n = 0, 1, 2, . . . (34)

1 mark

The general solution to the second differential equation (31) is

T (t) = C cos(αct) + D sin(αct) . (35)

1 mark

From (33), we obtain:

Tn(t) = Cn cos(
nπct

a
) + Dn sin(

nπct

a
) . (36)

1 mark
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Combining the functions of x and t and using the principle of superposition we
deduce the general solution:

V (x, t) =
∞
∑

n=0

Bn sin
(

nπx

a

)

[

Cn cos(
nπct

a
) + Dn sin(

nπct

a
)
]

. (37)

1 mark

(b) To fix the constants, we should now use the initial boundary condition V (x, 0) = 0
(the displacement of the string is initially zero) which implies that BnCn = 0.
Hence, we deduce that

V (x, t) =
∞
∑

n=1

BnDn sin
(

nπx

a

)

sin
(

nπct

a

)

. (38)

2 marks

Further, the velocity of the string at t = 0 is

U =
∂V

∂t
(x, 0) =

∞
∑

n=1

BnCn sin
(

nπx

a

)

nπc

a
. (39)

1 mark

Multiplying equation (39) by the function sin kπx
a

, and integrating it between 0
and a we obtain:

U
∫ a

0
sin

kπx

a
dx =

∞
∑

n=1

BnCn

(

∫ a

0
sin

nπx

a
sin

kπx

a
dx

)

nπc

a
= BkCk

kπc

2
(40)

where we have used the orthogonality relation (see Hint) to eliminate all terms
but one from the infinite sum.

2 marks

This leads to

BkCk = −2aU
cos(kπ) − 1

(kπ)2c
. (41)

1 mark

We now notice that B2kC2k = 0 and

B2k−1C2k−1 =
4aU

π2c

1

(2k − 1)2 .

We can now write down the full solution to the differential equation:

V (x, t) =
4aU

π2c

∞
∑

n=1

sin (2n−1)πx
a

sin (2n−1)πct
a

(2n − 1)2 . (42)

1 mark
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Using the trigonometric identity

sin(pt) sin(rt) = 1/2 (cos((p − r)t) − cos((p + r)t) ,

we obtain

V (x, t) =
2aU

π2c

[

∞
∑

n=1

1

(2n − 1)2 cos
(

(2n − 1)(x − ct)
π

a

)

−
∞
∑

n=1

1

(2n − 1)2 cos
(

(2n − 1)(x + ct)
π

a

)

]

.
(43)

The physical interpretation is that the left series represents wave propagation to
the right with speed c and the right series represents wave propagation to the left
with speed c.

1 mark
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