Answers for Exam of January 2006

[M283 - Field theory and PDEs]

1. (a) [Standard exercise, similar to lectures and tutorials.|
Gradient:

dp 0¢ ¢
v¢ <ax7 ay? az ( x? y? Z)
2 marks
Directional derivative of ®:

b (1,0,0)
Dpy® =Vo - — = (22,4y,22) - .
" by BT

2 marks
At point a = (2,1,1):

b
1 marks
Normal to ellipsoid:
ao Vo (@22)
Vel VErwr e
3 marks
At point a = (2,1,1):
. (2,2,1)
n—
V9
1 mark
Cartesian equation of tangent plane:
(r—a)-n=0
2 —2)4+2(y—1)+(z—1)=0
3 marks
Or
20 +2y+2="7.
1 mark

(b) [Bookwork i.e similar to lectures, tutorials and homeworks.
From definition of curl

v o 0 0 _ _ _
v X (g) = (%7@7%) X (¢ 1’Ux>¢ 1Uy>¢ 1Uz)

1



1 mark

So that,
vy _ -2 du, %) <3UZ 8%) 5
v (3) - o plE
ov,  Ov, 99 8¢>
o (G- %) (5 )
190, 3¢ .
()i
¢va+vxv¢ qbVXV—quXV
- 7 - 7 @)
3 marks

[ This is a standard exercise on gradient and curl discussed in lectures (see chapter
3 of lecture notes) and tutorials 2 and 3.] We check that

N (20 0 e
v<r> B (89&’81;’82) (z"+y + )

1
= —ﬁr, 7‘7&0,
2 marks
and
0 0
3N v o o /
= 3rr
1 mark
as well as
o 0 0
V X (I‘) - (%’5@/’@) X (ZL’,y,Z)
1 mark

where r = zi + yj + zk and r = |r|.

[Standard exercise] Therefore, we end up with

V xV (1) = VX (—%)
r r
r3(0) — 3rr X r

= — :0,7"7&0.

76

3 marks

In fact, this result holds for any smooth scalar field ¢ as seen during the lectures
[see also exercise 2]. 1 mark



2. (a) [Standard exercise, similar to lectures and tutorials.]
Line integral of F over Cy:

21
F.dr = / P
C1 0 dt
21
= / (2 cost +t,cost + 2t sin® ¢, 2t* sin t) - (—sint, 1, cost) dt
0
21 21 27
= / t*sin(2t) dt +/ tdt — / tsin(t) dt
0 0 0
= 2.
7 marks
(b) Using
0? o? s
VxVe¢ = - i
XV <3y82¢ 0z0y d)) !
0? 0? 5
B <8x82¢ 020z ¢> .
0? 0? -
— k
* <8x8y¢ OyOx ¢> ’
3 marks
and
0? 0?
dydz 020y
we conclude
VxVep=0.
1 mark
[Standard exercise, cf. tutorial 2.]
Curl of F R X R
VXxF=4yz—4y2)i—(0-0)j+(1—-1)k=0. (3)
5 marks

We deduce that F can be expressed as the gradient of a scalar field ¢. Hence,

~
.

F =2z +y)i+ (z +2y2%)j+ 2’2k = Vo .

1 mark
So that

<
|

2 +zy + fi(y, 2)
xy + 2" + folz, 2)
¢ - y222+f3(xay)>

<
Il
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2 marks
where fi, fo and f3 are three arbitrary functions which we need specity.
By inspection, we end up with

d):a:2+xy—|—y2z2+0,

2 marks
where C' is an arbitrary constant.

Line integral of F over Cs:

27
F.dr — / F. Ty
0 dt

2
- / (241,1,0)-(0,1,0) dt
0

27
= dt
0
= 2m.

Co

3 marks
[Bookwork: Gradient theorem and conservative fields.]

Since F derives from a scalar field ¢, the line integrals in (a) and (c) can be
reformulated as

/CF-dr = /CV¢-dr

21 d¢

; Edt

- ¢(1727T70)_¢(17070)

= 2m.

1 mark



3. [Bookwork, similar exercises were set in lectures, tutorials and homeworks.

Let us state Gauss’s theorem for a differentiable vector field F defined over a volume
7 with bounding surface S.

Gauss’s (or divergence’s) theorem :

Given a volume 7 which is bounded by a piecewise continuous surface S, and a vector
function F which is continuous and has continuous partial derivatives in 7, then

/Tv-FdT:fSEdS. (4)

Notice that the surface integral S has been drawn with a circle around it, in order
to indicate that this surface is closed, i.e. that it entirely encompasses the volume 7.
Also, dS is defined as the product of a small area (let’s say dxdy) by the unit outward
normal n to the surface S.

5 marks

The exercise now splits in two sections (which can be independently addressed).

nz=r— "25 ‘2_>n{3 y
- T
S/’ ”/ ~ '\\
4 X/l \l/ 33
Ng
Se Sl

Figure 1: A rectangular box over which we apply Gauss’s theorem.

(a) Divergence of F:
V. F=1+dy+3.

3 marks
Volume integral of divergence of F'

1 2 1 1
/(1+4y—|—3)d7:/ dx/ dy/ dz(4+4y):32/ dr=64 . ()
T ~1 -2 -1 -1

3 marks

By Gauss’s theorem, we deduce that
fF-dS:/(v-F)dT:m,
S T

b}



where 7 is the interior of S.

Let us now check that this is indeed what we would get from the direct evaluation
of the surface integral of F' over the surface S. For this, we decompose S into six
surfaces S, ..., Sg oriented by unit normals ny, ..., ng as defined in Figure 1.

Let us first evaluate:

F.-dS = /(x,2y2,3z)-(1,0,0)d5
St

/ dydz
= r——=
Ayz (1,07 0) ° i

2 1
= a:/ dy/ dz
2 —1

= 8,

St

since x = 1 on the surface S;. 1 mark
Similarly, we find

F-dS=-8, and [ F-dS=32 . (6)
5'2 SB

since z = —1 on the surface Sy and y = 2 on S3. 2 marks

Also, we have

F-dS =32, F-dS =24, and F-dS=-24
S4 S5 SG

since y = —2 on the surface Sy, z=1on S5 and z = —1 on Ss. 3 marks
Altogether, we obtain

6
F.dS — /F-dS
]{9 Zz::lsi
— 64,

We have therefore checked Gauss’s theorem on this example. 1 mark

Applying Gauss’s theorem, we derive that

ﬁr.ds - /Tv~rd7'

~ 3 / dr = 3Vol(r) . (7)

7 marks



4. [bookwork (same spirit as exercise 3).]

Let us first state the Stokes’ theorem for a differentiable vector field F defined over a
surface S bounded by a closed curve C.

Stokes’ theorem:

Given a surface S which is bounded by a piecewise continuous curve C, and a vector
function F which is continuous and has continuous partial derivatives on S, then

//S(VXF)-CZS:jiFdr (8)

5 marks

The exercise now splits into two sections (which can be independently addressed).

(a) Curl of F:

VxF=(2+2)i—(0-0)j+k(-z-3) . (9)
3 marks
Unit normal n to the surface S (see Figure 2):
V(*+y’—22)  (z,y,-1)

n= = .
| V(@2 +y?=22) | Vat+yP+1

(we deduce the orientation of fn from the thumb rule). 1 mark

Figure 2: The surface of the paraboloid over which we apply Stokes’ theorem.

dxd
Thus, an infinitesimal element dS of orientable surface S writes as dS = ﬁ%
n .
and we end up with
dxd
//(VXF)-CZS - //(VxF)~ﬁ s
s A |n-k|
2, .2 2, .2
= // xx+y +x2+x+y + 3| dzdy
A 2 2
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since z = (22 + y?)/2 on the surface of the paraboloid.

Note that here, A is the orthogonal projection of S onto the (zy)-plane as depicted
on Figure 2. 3 marks

Using polar coordinates, we obtain

[ [(vxF)as = " /:02 [ cos0)(r/2)

6=0
+ r?cos? O +1%/2 + 3} rdrdf = 207 .

2 marks
Now, the integral of F over C is

0
]{F-dr:/ (~12sint — 8 cos®t) dt = 20m . (10)
C 2

Y

2 marks
Hence, we have checked that

//(VxF)-dS:Z()ﬁ:]{F-dr. (11)
s c
Applying Stokes’ theorem, we obtain

7£V¢~dr://S(V><V¢)-dS:O, (12)

since V x V¢ = 0 for any (smooth) scalar function ¢ (see also ex. 2(b)).
7 marks



5. [Standard exercise on Laplace equation i.e. classwork and homework.]

(a) We try a solution which has the form

Viz,y) = X(2)Y(y) ,
which we can rearrange to get

X”(.T) Y//(y)

X)) TV

2 marks which leads to (since Y(0) = Y (L) = 0)

DS
@ - +042X(:E) s
d?Y
qr —aY (y) .

4 marks

The general solution to the differential equation (16) is
Y (y) = C cos(ay) + D sin(ay)

2 marks
Using Y(0) = Y(L) = 0 we are left with

a:=a,=nn/L wheren=20,1,2,...

1 mark

We now have the eigenvectors of the differential equation (16):
Y,(y) = Dysin(nwy/L) ,where n =0,1,2,...

1 mark

The general solution to the first differential equation (15) is
X(z) = Acosh(ax) + Bsinh(ax)

2 marks
Using X (0) =0, X (L) =V, we find that the eigenvectors of (15) are

X, (x) = B, sinh(a,x) .

2 marks

(18)

(20)

(21)



(b) Combining the functions of x and y, we obtain
Vo(z,y) = B, sinh(nrz/L) sin(nmy/L) | (22)

since we already know «,, = nm/L from (18).
1 mark
We now use the principle of superposition to write the general solution:

V(z,y) = i)En sinh(nmwx/L)sin(nry/L) . (23)
1 mark

Now if we pick the coefficients F,, correctly then we can satisfy the final boundary
condition, which is

V(Ly)="Vo.
So we want to collect coefficients FE,, such that
Vo =Y E, sinh(nr) sin(ny) . (24)
n=1

1 mark
We now multiply equation (24) by the function sin(k7y/L), and integrate it be-
tween 0 and L:

L L
VO/ sin(kmy/L)dy = E, sin(kﬁ)a , (25)
0

1 mark
where we have used the orthogonality relation (see Hint) to eliminate all terms
but one from the infinite sum.

This leads to
~ 2Vo 1 — cos(km)

E = 2
"7 7k sinh(kr) (26)
1 mark
We notice that Ey, = 0 and
I !
LT (2k — 1) sinh((2k — D7)
1 mark
Hence we conclude that
V(z,y) = > E,sinh(nrz/L)sin(nmy/L)
n=1
4Vy & sinh((2n — 1)%) ' X
= — 2n—1)—) . 27
7 ‘= (2n — 1)sinh((2n — 1)) sin((2n — 1) L ) (27)

2 marks
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(¢) [Aim: To derive the famous Mazimum Principle] At the center of the square, the
above expression reduces to

V(L/2,L/2) = 47‘/0 :1 on ilf)lgliz &;E) ) sin((2n — 1)%)
2V < (-

m = (2n — 1) cosh((2n — 1)7/2)

where we have used that sinh(2s) = 2sinh s cosh s.
3 marks
Since 7/4=1-1/34+1/5—1/7+ ... and cosh s > 1, it follows that

0 < V(L/2,1)2) < % <V
1 mark

Nota Bene: This result holds true everywhere within the square thanks to the so-
called maximum principle: The solution of Laplace equation takes its minimum
and maximum values on the boundary of the domain.
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6. [Standard exercise on the wave equation, classwork and homework.]

(a) The sepraration of variables leads to

X"(z) 1Tt

X(z) AT

2 marks

which by virtue of the boundary conditions X (0) = X (a) = 0 gives

?X

W = —OéQX(.Z') s
d?T

o —a?T(t)

4 marks
The general solution of (30) is:

X(z) = Acos(ax) + Bsin(ax) .

1 mark
Using X (0) = 0 and X (a) = 0 gives us a restraint on a:

0 = Bsin(aa) .
1 mark
That is,
o= n where n =10,1,2,...
a
1 mark

We now have the eigenvalues of the differential equation (30):

nmwx

X,(x) = B, sin <—> ,where n =0,1,2,...

a

1 mark

The general solution to the second differential equation (31) is

T(t) = C cos(act) + Dsin(act) .

1 mark
From (33), we obtain:

t t
nmce )+ D, sin (mrc

T,(t) = C,, cos( ).

a

1 mark
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(29)

(30)

(31)

(33)

(35)



Combining the functions of x and ¢ and using the principle of superposition we
deduce the general solution:

V(z,t) =Y B,sin (”%””) c, cos(m;d) + D, sin(”ZCt)] . (37)
n=0

1 mark

To fix the constants, we should now use the initial boundary condition V'(z,0) = 0
(the displacement of the string is initially zero) which implies that B,C, = 0.
Hence, we deduce that

> t
V(z,t) =Y B,D,sin (W) sin (mc ) . (38)
n=1 a a
2 marks
Further, the velocity of the string at ¢ =0 is
ov > nmwx\ nmwc
U=—(z,0)=)>» B,Cpsin|— | —. 39
5 (n 0 =3 sin (24 (39)

1 mark

kmx

Multiplying equation (39) by the function sin *7%, and integrating it between 0

and a we obtain:

a k ) a k k
U/ sin Lgcdac = Z B, C, </ sin nre sin Ui dx) nre _ BkOk%C (40)
0 a — 0 a

a a

where we have used the orthogonality relation (see Hint) to eliminate all terms
but one from the infinite sum.

2 marks
This leads to L .
ByCy = —2a0 %! ”l_ (41)
(km)“c
1 mark
We now notice that By, Co, = 0 and
4alU 1
Bop 105, —
2k-102k-1 = —5° (Qk_l)g
We can now write down the full solution to the differential equation:
4 U o0 Sln (271—1)71’(17 Sln (27’1—1)7‘('Ct
Viat) == > —= : (42)

T2 n=1 (2n - 1)2

1 mark



Using the trigonometric identity
sin(pt) sin(rt) = 1/2 (cos((p — r)t) — cos((p + r)t) ,

we obtain

Viet) = QaU[

i; 2n P cos ((Zn —1)(z — ct)%) .
2cos ((Zn—l)(x—i-ct)g)] : ()

Z

— 2n—

The physical interpretation is that the left series represents wave propagation to
the right with speed ¢ and the right series represents wave propagation to the left
with speed c.

1 mark
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