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Throughout the paper î, ĵ and k̂ represent unit vectors parallel to the x, y
and z axes respectively.

Paper Code MATH283 Page 1 of 8 CONTINUED/



1. (a) Given that
φ(x, y, z) = x2 + 2y2 + z2 ,

calculate ∇φ.
[2 marks]

Derive the expression for the directional derivative Dbφ(a) of φ at
point a = (2, 1, 1) in the direction of the vector b = (1, 0, 0).

[3 marks]

Calculate the outward unit normal to the ellipsoid

x2 + 2y2 + z2 = 7

at the point a = (2, 1, 1).
[4 marks]

Hence, find the cartesian equation of the tangent plane to the
above ellipsoid at the point a = (2, 1, 1).

[4 marks]

(b) Using the definition of gradient (∇) and curl (∇×), show that

∇× (
v

φ
) =

φ∇× v −∇φ × v

φ2
,

for any (smooth enough) scalar field φ and vector field v.
[4 marks]

Further, verify that

∇× (r) = 0 , ∇
(

r3
)

= 3rr , and ∇
(

1

r

)

= −
1

r3
r , r 6= 0 ,

where r = x̂i + yĵ + zk̂ and r = |r|.
[4 marks]

Deduce the expression of

∇×∇
(

1

r

)

, r 6= 0 .

Discuss briefly the result. [4 marks]
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2. (a) Evaluate the line integral

∫

C1

F · dr ,

where
F = (2x + y)̂i + (x + 2yz2)̂j + 2y2zk̂ ,

and the curve C1 is the helix parametrised by the equations

x(t) = cos t , y(t) = t , z(t) = sin t , 0 ≤ t ≤ 2π .

[7 marks]

(b) Using the definition of gradient (∇) and curl (∇×), show that

∇×∇φ = 0 ,

for any (smooth enough) scalar function φ.

[4 marks]

Show that the vector field F in (a) is irrotational, that is, ∇×F =
0.

[5 marks]

Deduce that F can then be expressed as the gradient of a scalar
field φ, and find this scalar field.

[5 marks]

(c) Finally, evaluate the line integral

∫

C2

F · dr ,

where C2 is the straight line segment from the point (1, 0, 0) to the
point (1, 2π, 0). Compare with the result of (a) and comment.

[4 marks]
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3. State Gauss’s theorem for a differentiable vector field F defined over a
volume τ with bounding surface S.

[5 marks]

(a) We want to verify this theorem for a given vector function F in-
tegrated over the rectangular box S with corners (±1,−2,−1),
(±1,−2, 1), (±1, 2 − 1) and (±1, 2, 1).

Calculate the divergence of the vector field

F = x̂i + 2y2ĵ + 3zk̂ .

[3 marks]

Then evaluate the volume integral

∫

τ

(∇ · F)dτ ,

where τ is the interior of S. [3 marks]

Finally, evaluate the surface integral

∫

S

F · dS ,

where C1 is the boundary of the surface S1 above, traversed in the
counterclockwise direction.

[7 marks]

(b) Apply Gauss’s theorem to evaluate the surface integral

∫

S

r · dS

where S is a closed surface and r = x̂i + yĵ + zk̂.

[7 marks]

Paper Code MATH283 Page 4 of 8 CONTINUED/



4. State Stokes’ theorem for a differentiable vector field F defined over a
surface S bounded by a closed curve C.

[5 marks]

(a) We want to verify this theorem for a given vector function F in-
tegrated over the surface S of a paraboloid

2z = x2 + y2 ,

bounded by the horizontal plane z = 2.

Calculate the curl of the vector field

F = 3yî− xzĵ + yz2k̂ .

[3 marks]

Then evaluate the surface integral

∫ ∫

S

(∇× F) · dS .

[6 marks]

Finally, evaluate the line integral

∫

C

F · dr ,

where C is the boundary

x2 + y2 = 4 ,

of the surface S above, traversed in the clockwise direction.

[Hint: you may use the parameters x = 2 cos t, y = 2 sin t, z = 2,
where 0 ≤ t ≤ 2π].

[4 marks]

(b) Apply Stokes’ theorem to show that

∫

C

∇Φ · dr = 0

for any smooth scalar field Φ over a closed curve C. [7 marks]
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5. A scalar function V (x, y) obeys Laplace’s equation

∂2V

∂x2
+

∂2V

∂y2
= 0 (1)

in the square region (0 ≤ x ≤ L), (0 ≤ y ≤ L), and is subject to the
following boundary conditions

V (x, 0) = 0 , V (x, L) = 0 , (2)

V (0, y) = 0 , V (L, y) = V0 , (3)

where V0 denotes a constant.

(a) Use separation of variables V (x, y) = X(x)Y (y) to show that (1)
decouples into

d2X

dx2
− α2X = 0 , α 6= 0 , (4)

and
d2Y

dy2
+ α2Y = 0 , α 6= 0 . (5)

[6 marks]

From (2) and (3), deduce the boundary conditions associated with
(4) and (5). Hence show that the eigenvalues of (4) and (5) are

α =
nπ

L
, n = 0, 1, 2, · · ·

and their associated eigenvectors are

Xn(x) = An sinh(nπx/L) , Yn(y) = Dn sin(nπy/L) .

[8 marks]

(b) Show that the solution of the boundary value problem (1)-(3) can
be expressed as

V (x, y) =
4V0

π

∞
∑

n=1

sinh((2n − 1)πx

L
)

(2n − 1) sinh((2n − 1)π)
sin((2n − 1)

πy

L
) .

[Hint: you may assume that
∫

L

0

sin(nπy/L) sin(kπy/L)dy =
L

2
, if

n = k, n 6= 0, and 0 otherwise.]

[9 marks]

(c) Finally, deduce that at the centre of the square, 0 ≤ V ≤ V0. This
result holds everywhere within the square (Maximum principle).

[Hint: you may assume that sinh(2s) = 2 sinh s cosh s and also
π/4 = 1 − 1/3 + 1/5 − 1/7 + ....]. [2 marks]
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6. The displacement V (x, t) from the horizontal of a uniform elastic string
of unstretched length a satisfies the wave equation

∂2V

∂x2
=

1

c2

∂2V

∂t2
, (6)

where c is a strictly positive constant (speed of wave).
This equation is subject to the boundary conditions

V (0, t) = V (a, t) = 0 , (7)

together with the initial condition

V (x, 0) = 0 , 0 < x < a . (8)

(a) Show, using separation of variables V (x, t) = X(x)T (t), that (6)
decouples into

d2X

dx2
+ α2X = 0 , α 6= 0 , (9)

and
d2T

dt2
+ c2α2T = 0 , α 6= 0 . (10)

[6 marks]

Deduce that the most general solution of (6)-(8) is

V (x, t) =
∞
∑

n=1

AnDn sin (αnx) sin (αnct) , αn =
π

a
n . (11)

Find the constants AnDn given that

∂V

∂t
(x, 0) = U , 0 < x < a , (12)

where U is a constant.

[8 marks]

(b) Show that the solution of (6)-(8) and (12) can be expressed as

V (x, t) =
2aU

π2c

[

∞
∑

n=1

1

(2n − 1)2
cos

(

(2n − 1)(x − ct)
π

a

)

−
∞
∑

n=1

1

(2n − 1)2
cos

(

(2n − 1)(x + ct)
π

a

)

]

.
(13)

Briefly discuss this result from a physical viewpoint.

[Hint: you may assume that
∫

a

0

sin
(

πnx

a

)

sin
(

πmx

a

)

dx =
a

2
, if

n = m, n 6= 0, and 0 otherwise.] [11 marks]
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