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COMMENTS

Student are asked to attempt FOUR problems only. All problems are of
equal value (25 marks).

All questions were discussed either during the lectures (in which case we will
call them bookwork) or during tutorials and homeworks (standard exercise).
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1. (a) [Standard exercise, similar to lectures and tutorials.]
Given that
o(x,y,2) = 2%+ 2y° + 32% |
its gradient V¢ is :

0p 0¢p 0¢
==, =, = | =22,4 .
V¢ <8I78y78z ( x? y76z)
[2 marks|
The directional derivative of the scalar function ¢ at a general

point (z,y,z) in the direction given by the vector b = (1,0,0)

writes as
b (1,0,0)
Dpy® =Vd - — = (22,4y,62) - .
[2 marks|
At the point a = (2,1, 1), it reduces to
b (1,0,0)
Dp®P(a) = VP(a) - — = (4,4,6) - =14.
(a) (a) B (4,4,6) il
[1 marks]

The unit outward normal to the ellipsoid ¢(x,y,z) = 2% + 2y* +
322 = 9 at a general point (x,y, z) is (note that the sign is positive)

Vo _ (233’ 4y, 62) o (1’, 2y, 32)
‘v¢|_\/42U2+16y2+3622_\/x2+4y2+922
[3 marks]

n=

At point a = (2,1, 1) it can be simplified as:
(2,2,3)
VIT

n=

[1 marks]
Hence, the cartesian equation for the tangent plane which touches
the ellipsoid at that point is given by

(r—a)-n=0
(2,2,3) B
(r—(2,2,1))- it =0
20 —-2)+2(y—2)+3(z—1)=0
[3 marks]
Or
20 +2y+3z=11.
[1 marks]

[Altogether 13 marks|
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(b) [Bookwork i.e similar to lectures, tutorials and homeworks).

From the definition of divergence (V-), we know that

V(00 0
v (¢) - <8I7 ay) az> (QS /UCC’(ZS Uy’¢ UZ)
_ O0(¢7Mvs) | O(¢7'yy) | O(¢v:)
N ox + oy + 0z
for any (smooth enough) scalar field ¢(x,y,z) and vector field
v(z,y, 2) = (v(2,y, 2), vy(2,y, 2), v.(2, Y, 2)). [2 marks)]
Now,
d /,_ 4, 0 0/,
%((b 1Um> - (Z) 1%(?}1)—’_1&% ((b 1)
4 0 _,00
_ 1 9 _ 209
= ¢ Ox (0) = v Ox
ov 0¢
_ 2 z _ il
- QS (QS ax ’Uaca )
Similarly,

o , _ v, ¢
8_y(¢ 1%) =¢ 2( %_Uya_?)
2 (67M0.) = 07 (¢>% v @>

[1 marks]

Therefore,

[1 marks]

[ This is a standard exercise on gradient and divergence discussed
in lectures (see chapter 3 of lecture notes) and tutorials 2 and 3.]
We check that

N _ (0 9 9 2,2 .2\"1/2
v(r) B <8x’8y’8z>(x Ty )

1 _
= @+ +2) (2 2y,22)

1
= —ﬁr,r#o,
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[2 marks]

and
o o0 0 3/2
3y, _ (Y 9 9 2,2, .2
Vi) = (ax’ ay’az> @ty +2)
= ;(xQ + 9 + Z2)1/2(2x, 2y,22)
= Jrr,
[1 marks]
as well as
o o0 0
V- (r) <8_x’8_y’@> (7,9,2)
= 1+1+1
[1 marks|
where r = zi + yj + zk and r = |r].
[Standard exercise Therefore, we end up with
1
=) - v
r r
rBV-r—r-V(rd)
= — r6
3r3 3r
- e ()
3 3
= _ﬁ F =0 , T 7é 0
[4 marks|

Alternative derivation: Otherwise, one may go through this
derivation without using (i) (which is more cumbersome!). In this
case, we first write:

[1 marks]
Now, we note that

Vo) = (0/00,0/0y,0/02) - LD

r3
_ 2(£>+2(£)+2<3)
Oz \r3 oy \r3 0z \r3
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_ (L) Lo 01y 10
Tor \is r3 Ox y(’?y r3 3y

+22<i>+ 182,7’#0.

0z \r3 0z
[1 marks|
Also,
0 (1 _,0r
AC I
= —37°_4a—$ ((332 + 1y + z2)1/2>
= —31“_4E =—3r%z,r #0.
r
[1 marks]

A similar expression holds for the other two variables y and z. We

thus find that

1 1 1 1 1 1
V -1 _ 2 2 2
‘(T r> - <_ﬁ>+ﬁ+y (_ﬁ>+ﬁ+z <_T3) r3

3 3r?

[1 marks]

In physics, 1/r is known as Coulomb potential which is a standard
solution of Laplace equation V2¢ = 0.

[Altogether 12 marks]
Adding up (a) and (b) we obtain a total of 25 marks as required.
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2. (a) [Standard exercise, similar to lectures and tutorials.]
We want to evaluate the line integral

/F-dr,
c

A~
.

F=(y+2)i+(z+a)j+@+yk,
and the curve C is defined by

where

_ .2 __ .3
y=x",z2=21a",

from the point (0,0,0) to (1,1,1).
For this, we first parametrise the path C in 3D space by the equa-

tions
r =t
= 2
z =t ,
where ¢ starts at 0 and ends at 1. [1 marks|

We then need to express the vector field F in terms of the param-
eter ¢

A
.

F(t)= (2 + )i+ +0j+ (t+ 1))k

[1 marks]
Further, if we consider the parametrised vector
r(t) = z(t)i + y()j + z(O)k = ti + %) + £’k |
its total derivative writes as
dr 5 -
— =i+ 2tj+3t°k .
7 1+ 2t) +
[1 marks]

Altogether, the line integral of the vector field F over the path C
is expressed as

14
/F-dr _ /F-—rdt
C 0 dt
1
- /(t2+t3,t3+t,t+t2)-(1,2t,3t2) dt
0
1
_ /(t2+t3+2t4+2t2+3t3+3t4) it
0
1
— / (5t4+4t3+3t2) dt
0
1
= [t5+t4+t3]
0

= 14+1+41=3.
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[4 marks]

[Altogether 7 marks|
(b) From the definition of gradient (V) and curl (Vx), we have

0? 0? s

VXxVé = <8y8z¢ B azayd)) !

02 0? s

a <8$82¢  0z20x ¢> .

0 0 -

— k.

+ <8x8y¢ Oyox ¢>

[3 marks|

Now, for any smooth enough scalar function ¢, Schwarz’s theo-
rem ensures that [Bookwork: theorem proved in lecture notes for
functions of class C*.]

0? 0?
Oy0z a 020y’

so that the term sitting as a factor in front of i cancels out. Simi-
larly, the other two factors sitting respectively in front ofj and k
also cancel out. Hence, we conclude that for any (smooth enough)
scalar field ¢

VxV¢p=0.

[1 marks|

| Throughout the M283 course, we assumed that the domain over
which the functions were defined were simply connected, so that the
students did not meet any advanced theoretical problems when deal-
ing with a curl-free gradient (cohomology).] [altogether 4 marks]

[Standard exercise addressed both in lectures and tutorial 2.] The
curl of the vector field

F=(y+2)i+(z+a)j+@+yk,
is given by

VxF =
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[3 marks for definition of curl and 2 marks for result i.e. 5 marks]

[standard exercise detailed both in lectures and tutorials] We de-
duce that F can be expressed as the gradient of a scalar field ¢,
since on the one hand it is irrotational and on the other hand the
gradient of any scalar field is itself irrotational. Hence,

A
.

F=(y+2)it(z+a)j+(@+yk=Vop.

[1 marks|
In other words,
9¢
% =y +z
% = z+ux
9¢
% = r+tvy,
[2 marks]

so that

¢ = yxr+zx+ fi(z,y)

¢ = zy+ay+ folz, 2)

¢ = zztyz+ fi(r,9),
where fi, fo and f3 are three arbitrary functions which we need
specify.
By inspection, we end up with

p=yr+zx+zy+C

[2 marks]
where C' is an arbitrary constant which can be set to zero.

[Altogether 5 marks]

[Bookwork: this exercise has to do with the Gradient theorem and
conservative fields and was addressed both in tutorials and lectures
as well as set in homeworks.] The line integral in (a) can be
reformulated as

/CF-dr - /CVQS-dr
_ /OIVQS-%dt

_ [0 00 (i dy b2,
—Jo \oz 0y’ 9z dt’ dt’ dt

1d¢
= [ Za

o dt
= ¢(171a1)_¢(07070)
= 14141=3,
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Paper Code

[3 marks]
which is consistent with the result of question 2.(a).

[ This derivation is fairly classical and was introduced during the
lectures within the context of so-called ‘Gradient theorem’. Men-
tioning this theorem without going through the above derivation
also provides a full mark.]

[1 marks|

[Altogether for (b) 18 marks]
If we add up marks for (a) and (b) we find 25 marks as required.
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3. [Bookwork, similar exercises were set in lectures, tutorials and home-
works.

Let us state Gauss’s theorem for a differentiable vector field F defined
over a volume 7 with bounding surface S.

Gauss’s (or divergence’s) theorem :

Given a volume 7 which is bounded by a piecewise continuous surface
S, and a vector function F which is continuous and has continuous
partial derivatives in 7, then

///Tv-FdT:ng-ds. (1)

Notice that the surface integral S has been drawn with a circle around
it, in order to indicate that this surface is closed, i.e. that it entirely
encompasses the volume 7. Also, dS is defined as the product of a
small area (let’s say dxdy) by the unit outward normal n to the surface

S. [5 marks|
The exercise now splits in two sections (which can be independently
addressed).

(a) The region 7 is the hemi-spherical volume which is enclosed by
the
surface 2 + y? + 22 = 1 and the plane z = 0, and lies above the
(z,y) plane. Hence, it looks as follows (a hat!):

[2 marks]

Using Gauss’s theorem, the surface integral can be expressed as

]g(xi+4yj+7z12)-ds - /// (%%%).(%4@,,7@ dr

= ///T(1+4+7)d7'

= 12 (Volume of region 7)

[3 marks]
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(b) Using polar coordinates,
r=rsinf, y=rcosf,

the region D can be reformulated as
D(r,0) = {(r,&) © 2r%cos? 0 +risin?0 <8, r>0,0<60< 7r/2}

2v/2
V2 cos?26 + sin? 6

= {(rn0) : 0<r<RO) = ,0<0<m/2
{ }

[2 marks]
So that we can express the double integral as

//D flz,y) dedy = /W/Q/ f(r,0) dr(rdo)
= /Tr/2 (/R(e) 3dr> sin @ cos 6 df

TI'/2 fr-
= [Z] sin @ cos 6 db

sin @ cos 6 db

7r/2 4
(\/2 cos? 0 + sm2 (9)

[5 marks]

As suggested by the “Hint”, the student should now make the
change of variable u = cos?f. Of course, we now have dff =
—1/2sin 6 cos0db, so that

1 /1 64
: dedy = = — _d
//Df(r,y) vy 2 Jo (2u—|—1—u)2 "

1
= 32|— 1
u—i—lo

= 16

[3 marks]

The student should now make use of Gauss’s theorem which en-
sures that

// (2 /// (x yl)) dxdydz
a(Dx[0,1]) Dx|o, 1]
/// (2zy) dxdydz
Dx[0,1]

_ 2/01<//nydxdy> dz

= 2x16
32
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[3 marks for Gauss’s theorem+2 marks for result=5 marks]

Adding up 5 marks for stating Gauss’s theorem, 5 marks for
(a), 10 marks for the double integral in (b) and 5 marks for the
surface integral in (b), we end up with 25 marks as required.
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4. [bookwork (same spirit as exercise 3).]

Let us first state the Stokes’ theorem for a differentiable vector field F
defined over a surface S bounded by a closed curve C.

Stokes’ theorem:

Given a surface S which is bounded by a piecewise continuous curve C,
and a vector function F which is continuous and has continuous partial
derivatives on S, then

//S(VXF)-dS—]{:F-dr 2)
[5 marks|

The exercise now splits into two sections.
(a) The curl of the vector field
F, = 2221 + ij + 2%k .
writes as
VxF; = (0—0)i— (222 —222)j+k(2-0)
= 2k.

[3 marks]

Let us now evaluate the surface integral

//Sl(VxFl)-dS

where S is the plane surface bounded by the circular path
P Hyi=4, 2=2.

which is depicted on the figure below so that the unit normal n
to the surface Sy is simply the vector of the canonical basis k (we
deduce the orientation of n from the thumb rule).
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Thus, an infinitesimal element dS of orientable surface Sy writes
as dS = ndxdy = kdxdy and we end up with

//Sl(VxFl).dS _ /[91(2§)-Rdxdy=/[gzdxdy

= 2 (area of S1)
= 2(n2?) =8r.

[3 marks]
Let us now evaluate the path integral

F1 - dr s
C1

where C; is the boundary of the surface S; above, traversed in the
counterclockwise direction.

First of all we use the parametrisation

= 2cost
= 2sint
z = 2
with
0<t<2m .
Then R R R
F,(t) = 8costi +4costj + 8cos’tk ,
[1 marks]
also R R R
r(t) = 2costi+ 2sintj + 1k
hence
dr o . .
= —2sinti+ 2costj + Ok .
[1 marks|

Therefore, the integral is

2
F,{-dr = 8/ (—2costsint+cos2t>dt
0

Y (Y T e . CLA B
(- s+ [T
_ 8[008(22&)]% . [t . sm(%)r”

C1

2 2 2

0 0

= &m.
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[2 marks]
Hence, we have checked that

//SI(VXFI)-dS:&r: [ ¥y (3)

[Altogether for (a) 10 marks]
(b) We start with the surface integral. We note that

VxFy = i(0-0)—j0—2%) +k(0—z)
= zzj—a:ﬁ

= sz—xl; on Ss.

[3 marks]

Also on S5 we have

dS = kdx dy .

So the surface integral is

// V xFy-dSy = // (2% — zk) - kdz dy
5'2 52

[3 marks|
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Now looking at the line integral, we split it up into three sections:

F2-dr:/F2-dr—|—/ F2dr—i—/ F2'dr
Ca C% C% Cg

On the line segment Cj, we have z = 1,2 = 0 and y starts at 1
and ends at 0. Hence we choose the parameters:

y o
z = 0
=1 (4)
Hence
de ey e
ar  ar Y T
=]
(5)
So,
dr a2
F L o 3- .-
2y (?J J) J
=t (6)
Hence

d 0
Fo-Sqt = /t3dt
1
WO 1
1),” 1

[1 marks]

On the line segment C3, we have z = 1,y = 0 and x varies between
0 and 1. Hence we chhose x =t as our parameter, giving
dr
dt

=i
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and hence
dr N

Fy — =tk-i-=0.
2t !

which implies

dr
Fo - —dt=0 .
/cg 2 dt

Therefore this line segment contributes nothing to the final inte-
gral. [1 marks]

On the line segment Cj, we have 2 = 1, x +y = 1 and x starts at
x = 1 and finishes at x = 0. Hence we chose the parameters

=1
=1
= 1-¢
(7)
Thus we have
dr .
— =1
dt .
which implies
dr A 3% 27 T
FTE = (wyi+y’j+z2k)-(1—]))
= t(l—t)—(1—-1)°
(8)
So that the integral over the line segment C3 is
dr 0
Fp-—dt = / t—t*) —(1—t)?)dt
[p G = [(e-A-a-0)
_ [P -t 0
12 03 4|
1 1 1
=17 G739
[1 marks|
The final integral is then
Fo-dr = ! +0+ !
e 2T Ty 12
1
= 75 (9)
And so Stokes theorem is verified. [1 marks]
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[Altogether for (b) 10 marks]

Adding up 5 marks for the statement of Stokes’s theorem, 10
marks for (a) and 10 marks for (b) we obtain a total of 25
marks as required.
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5. [Standard exercise, the Laplace equation has been addressed in class
work and also in lecture notes.]

(a) The function we want to find satisfies Laplace’s equation in two
dimensions
o’V PV
Ox? + oy?
in the region 0 < x < 7, —L <y < L, and the boundary condition
which we prescribe on the edge of this region are

0 (10)

V(-L,y)=V(L,y) =1, (11)
V(z,0) =V(z,7m)=0 . (12)

We try a solution which has the form
Viz,y) = X(2)Y(y) , (13)

and now we have to work out what these functions X (z) and Y (y)
are. Substituting into Laplace’s equation, we obtain

X" (@)Y (y) + Y ()X () =0 (14)
which we can rearrange to get

X'(x)  Y'(y)
X(x)  Y(y)

~0 . (15)

[2 marks|
The point is that the variables separate, and we see that we have
to solve the two ordinary differential equations
d*X A’y

— = +a’X —

— Fa®Y(y) . (16)

[2 marks|

To get the right choice for the sign of a? we look at the boundary
conditions; the second condition (12) implies that

Y(0)=Y(r)=0 | (17)

and so this function cannot end up being made up of cosh and
sinh functions otherwise it would be zero, and so the differential
equations we have to solve are

d*X

T = +a?X (7) | (18)
a’y )
d—y2 = —aY(y) . (19)
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[2 marks]

[Altogether 6 marks]

The general solution to the differential equation (19) is
Y (y) = C cos(ay) + Dsin(ay) (20)

[2 marks]

The boundary condition Y (0) = 0 lets us get rid of one of the
arbitrary constants:

0 = C cos(a0) + D sin(a0)

and so C' = 0. Applying the boundary condition Y (r) = 0 gives
us a restraint on a:

0 = Dsin(am) ,
[2 marks|
so that we are left with
a:=a,=n wheren=20,1,2,... (21)
[1 marks]

We now have the eigenvectors of the differential equation (19):
Y,(y) = D, sin(ny) ,where n =0,1,2,... (22)

[1 marks]

We now turn attempt to solve the first differential equation (18).
The general solution to this equation is

X(z) = Acosh(ax) + Bsinh(ax) (23)

[2 marks]

Now, looking at the boundary conditions for our function X (z),
we notice that from (11) these are

X(—L)=X(L)=1. (24)

[1 marks]

These boundary conditions are inherently symmetric in the vari-
able x. This means that we can eliminate (anti-symmetric) sinh ax
terms from the general solution (23). Hence, we can write the
eigenvectors of (18) as

Xn(x) = A, cosh(anz) . (25)

[1 marks]

[Altogether 10 marks]
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(b) Combining the functions of = and y, we obtain

Valz,y) = Xa(2)Y(y)

= Acosh(a,z)D,, sin(ny) (26)
= [E, cosh(nx)sin(ny) ,
since we already know «,, = n from (21). [1 marks]

We now use the principle of superposition, which says that we can
add any two solutions together to get another solution, to write
the general solution (our differential operator is linear)

V(z,y) = i E,, cosh(nx)sin(ny) . (27)

n=0

[1 marks]

Now if we pick the coefficients E,, correctly then we can satisfy
the final boundary condition, which is

V(L,iy)=1.

(Notice that if this boundary condition is satisfied, then it au-
tomatically follows that V(—L,y) = 1 because we have already
imposed symmetry on the solution). So we want to pick coeffi-
cients F,, such that

1= i E, cosh(nL)sin(ny) . (28)

n=0

[1 marks]
In order to work out the unknown coefficients E,, we have to ex-
ploit the orthogonality of the functions sin(ny). This means that
the functions are linearly independent, that is, is is impossible to
make up, say, the function sin 3y out of any linear cominbation
of siny, sin 2y, sin 4y, etc. More practically it means that multi-
ples of orthogonal functions always integrate to zero over certain
regions. In this case

/7r sin(ny) sin(ky)dy = { % ifn =k, (29)

0 otherwise.

[1 marks]

We now multiply equation (28) by the function sin(ky), and inte-
grate it between 0 and 7:

/07r sin(ky)dy = i E, cosh(nL) /07r sin(ny) sin(ky)dy

n=1

= Ekcosh(QkL)g, (30)
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[1 marks]

where we have used the orthogonality relation (29) to eliminate
all terms but one from the infinite sum.

The integral on the left hand side is easily calculated to be:

/7r sin(ky)dy = l_icos(ky)]
0 k 0
cos(km) — 1
= g (31)
[1 marks]
Combining these gives
-1
_eostkm) =1 _ g cosh(kD)T (32)
k 2
[1 marks]
Or, re-arranging,
2 1 — cos(km)
By = = 20T
"~ 7k cosh(kL) (33)
[1 marks|

We can now write down the full solution to the differential equa-
tion:

V(z,y) = io:En cosh(nzx) sin(ny)

n=1

> 21— cosh(nr) ,
= ——— = cosh . 34
2 = cosh(nI) cosh(nx) sin(ny) (34)

[1 marks]

[Altogether 9 marks]
Adding up (a) and (b) we have 25 marks as required.
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6. [Standard exercise: the heat equation has been addressed during class-
work and also in lecture notes.]

(a) To solve the equation

w2t (35)
we try a solution of the form
u(z,t) = X (x)T(t) (36)
Substituting (36) into (35) leads to
X(2)T'(t) = kX" (2)T(t) , (37)
which can be recast as
" /
e
[3 marks]

[Here, we have used the fact that X(x) and T(t) are # 0, since we
are looking for non-trivial solutions of the spectral problems in X

and T

Hence, we must solve

X' _ 1T,
X - Y RTw Y (39)

[Anticipating the exponential solution in T(t), we have picked a

negative separation constant —a?, so that the solution remains

finite when t tends to infinity. This was explained during class

exercise and in the lecture notes.| [1 marks]
To find the eigenvalues and eigenfunctions of the boundary value
problem
d*X
FHEX:O, X0)=X(m)=0 , (40)
x

we proceed as follows:

We first notice that the general solution to:

22X,

X(x) = Acos(ax) + Bsin(ax) .
[2 marks]
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When = = 0, this simplifies to:
X(0) = Acos(a0) + Bsin(a0) = A
which thanks to boundary condition X (0) = 0 implies
A=0.

[1 marks]

Now, looking at the other extremity of the bar (X (1) = 0) gives:
Bsin(al) = 0.

[1 marks|
So that we are left with:

a:=a,l=m,n=0 1,2, ..
[2 marks]
Thus, the eigenvalues of the spectral problem (40) look like:

ap = %n n=0,1,2,.. (41)

and the associated eigenfunctions can be written as:
Xn(x) = By sin(ap) .

[1 marks]

The eigenfunctions associated with the first ordinary differential
equation in (39) subject to boundary conditions X (0) = X (1) =0
are

Xn(x) = By, Sin(gnz)

[1 marks]
The second equation in (39) is
T'(t) = —a?kT(t) ,
[1 marks|
which has the general solution
T, (t) = Oy exp(—a2kt) .
[1 marks]

[Altogether 14 marks]
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(b) We can write the general solution u(x,t) as
0
0o . T )
= ) B,sin <7nx> C exp(—aikt)
0
= Z an sin (%nz)

0

(mn)”
xCpexp | —k B Kkt ]|,

where in the last equation we have used (41).
We know that at t =0

u(z,0) =z(l —x) .

We thus deduce from (42) that

z(l—2)=> B,Cy,sin (%m:) :
0

(42)

[3 marks|

Let us now multiply both sides of this equation by sin(7wmz/l)

x(l — z)sin (%mx) =Y B,C,sin (%nm) sin <§mx> ,
0

and integrate over the interval [0, []

l 0 I
/0 x(l — z) sin <§mx) de = XO:BnC’n/O [sin (%

sin <%mm) da:} .
Now, we note that

Lo LT
/ sin (—nx) sin <—mm) dx =
0 [ [

so that

O~

otherwise,

l ! /T
B, Ch= = / z(l — x)sin <—mx) dx |
2 0 l

where m = n.

for m =n,

)

(43)

[3 marks]

(44)

[1 marks]
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Integrating by parts twice, we obtain:

— [7_C08< l >:c(1—x)]

l

B, C,

m™m

l

—/Ol [—w] (1 —2z)dx

N|=‘

0

= /ol L) UTI) (1—2x)dx

m™m

From (45), it is clear that

3
{4<l> for m=2k+1, k=0,1,2---
= mm

0 otherwise,
(46)
Therefore, since m = n, it follows from (42) and (46) that the solu-
tion of the heat equation (35) subject to the boundary conditions
u(0,t) = u(l,t) = 0 and the initial condition u(z,0) = z(l — x),
writes as:

00 . 2
u(z,t) = > B,Cyhsin <§m:) exp (W)
n=0

— ]ingH Cog41sin (?(Zk + 1)$> exp <—(7T(2k:l;r 1))2,%)
) ﬂzio @n+1)° l%M)
X exp <_(2n +121) ﬁa;tﬂ | .
[1 marks]

[Altogether 11 marks]

Adding up (a) and (b) we obtain 25 marks as required.
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