PAPER CODE NO. MATH283

JANUARY 2005 EXAMINATIONS

Bachelor of Engineering: Year 2
Bachelor of Science: Year 2
Master of Engineering: Year 2
Master of Physics: Year 2

FIELD THEORY AND PARTIAL DIFFERENTIAL EQUATIONS

TIME ALLOWED: Two Hours

INSTRUCTIONS TO CANDIDATES

Attempt FOUR questions only. All questions are of equal value (25 marks each).

Throughout the paper $\hat{\bf i}$, $\hat{\bf j}$ and $\hat{\bf k}$ represent unit vectors parallel to the $x,\,y$ and z axes respectively.

1. (a) Given that

$$\phi(x, y, z) = x^2 + 2y^2 + 3z^2 \quad ,$$

calculate $\nabla \phi$.

[2 marks]

Derive the expression for the directional derivative $\mathcal{D}_b\phi(\mathbf{a})$ of ϕ at point $\mathbf{a} = (2, 1, 1)$ in the direction of the vector $\mathbf{b} = (1, 0, 0)$.

[3 marks]

Calculate the outward unit normal to the ellipsoid

$$x^2 + 2y^2 + 3z^2 = 9$$

at the point a = (2, 1, 1).

[4 marks]

Hence, find the cartesian equation of the tangent plane to the above ellipsoid at the point $\mathbf{a} = (2, 1, 1)$.

[4 marks]

(b) Using the definition of gradient (∇) and divergence $(\nabla \cdot)$, show that

$$\nabla \cdot (\frac{\mathbf{v}}{\phi}) = \frac{\phi \nabla \cdot \mathbf{v} - \nabla \phi \cdot \mathbf{v}}{\phi^2} \;,$$

for any (smooth enough) scalar field ϕ and vector field ${\bf v}.$

[4 marks]

Further, verify that

$$\nabla \cdot (\mathbf{r}) = 3 \;,\; \nabla \left(r^3 \right) = 3r \mathbf{r} \;,\; \mathrm{and} \; \nabla \left(\frac{1}{r} \right) = -\frac{1}{r^3} \mathbf{r} \;, r \neq 0 \;,$$

where $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ and $r = |\mathbf{r}|$.

[4 marks]

Deduce the expression of

$$\nabla^2 \left(\frac{1}{r}\right) , r \neq 0 ,$$

where $\nabla^2 = \nabla \cdot \nabla$ denotes the Laplacian.

[4 marks]

2. (a) Evaluate the line integral

$$\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{dr}$$
,

where

$$\mathbf{F} = (y+z)\hat{\mathbf{i}} + (z+x)\hat{\mathbf{j}} + (x+y)\hat{\mathbf{k}},$$

the curve C joins the origin to the point (1, 1, 1), and it is defined by

$$y = x^2, z = x^3.$$

[7 marks]

(b) Using the definition of gradient (∇) and curl $(\nabla \times)$, show that

$$\nabla \times \nabla \phi = \mathbf{0}$$
,

for any (smooth enough) scalar function ϕ .

[4 marks]

Show that the vector field

$$\mathbf{F} = (y+z)\hat{\mathbf{i}} + (z+x)\hat{\mathbf{j}} + (x+y)\hat{\mathbf{k}}$$

is irrotational, that is, $\nabla \times \mathbf{F} = \mathbf{0}$.

[5 marks]

Deduce that **F** can then be expressed as the gradient of a scalar field ϕ , and find this scalar field.

[5 marks]

Finally, verify that the line integral in (a) can be evaluated as

$$\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{dr} = \phi(1, 1, 1) - \phi(0, 0, 0) .$$

[4 marks]

3. State Gauss's theorem for a differentiable vector field \mathbf{F} defined over a volume τ with bounding surface S.

[5 marks]

We want to apply this theorem to evaluate two surface integrals.

(a) If the region τ is the hemi-spherical volume defined as

$$\tau = \left\{ (x, y, z) : x^2 + y^2 + z^2 \le 1 , \ z \ge 0 \right\},\,$$

sketch τ and evaluate the surface integral

$$\int \int_{S_1} (x\hat{\mathbf{i}} + 4y\hat{\mathbf{j}} + 7z\hat{\mathbf{k}}) \cdot d\mathbf{S}$$

where S_1 is the bounding surface of τ .

[5 marks]

(b) Use polar coordinates to find the double integral of the scalar function f(x,y)=xy over the the quarter ellipse

$$D = \left\{ (x, y) : x^2 + \frac{y^2}{2} \le 4 , \ x \ge 0 , \ y \ge 0 \right\}.$$

[Hint: You may find the change of variable $u = \cos^2 \theta$ helpful.]

[10 marks]

Hence, evaluate the surface integral

$$\int \int_{S_2} (x^2 y \hat{\mathbf{i}}) \cdot d\mathbf{S}$$

where S_2 is the surface of the cylindrical solid $D \times [0,1]$.

[5 marks]

4. State Stokes' theorem for a differentiable vector field \mathbf{F} defined over a surface S bounded by a closed curve C.

[5 marks]

We want to verify this theorem in two cases.

(a) Calculate the curl of the vector field

$$\mathbf{F_1} = xz^2\hat{\mathbf{i}} + 2x\hat{\mathbf{j}} + zx^2\hat{\mathbf{k}}.$$

[3 marks]

Then evaluate the surface integral

$$\int \int_{S_1} (\nabla \times \mathbf{F_1}) \cdot d\mathbf{S} ,$$

where S_1 is the upward-oriented plane surface in z=2 bounded by the circular path

 $x^2 + y^2 = 4$.

[3 marks]

Finally, evaluate the line integral

$$\int_{\mathcal{C}_1} \mathbf{F_1} \cdot d\mathbf{r} \ ,$$

where C_1 is the boundary of the surface S_1 above, traversed in the counterclockwise direction. [4 marks]

(b) Calculate the curl of the vector field

$$\mathbf{F_2} = xy\hat{\mathbf{i}} + y^3\hat{\mathbf{j}} + xz^2\hat{\mathbf{k}} .$$

[3 marks]

Then evaluate the surface integral

$$\int \int_{S_2} (\nabla \times \mathbf{F_2}) \cdot d\mathbf{S} ,$$

where S_2 is the triangle with corners at points (0,0,1), (1,0,1) and (0,1,1). [3 marks]

Finally, evaluate the line integral

$$\int_{\mathcal{C}_2} \mathbf{F_2} \cdot d\mathbf{r} \ ,$$

where C_2 is the boundary of the surface S_2 above, traversed in the counterclockwise direction. [4 marks]

5. A scalar function V(x,y) obeys Laplace's equation

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0 \tag{1}$$

in the rectangular region $(-L \le x \le L), (-\pi/2 \le y \le \pi/2)$, and is subject to the following boundary conditions

$$V(x,0) = V(x,\pi) = 0, (2)$$

$$V(-L, y) = V(L, y) = 1$$
. (3)

(a) Use separation of variables V(x,y) = X(x)Y(y) to show that (1) decouples into

$$\frac{d^2X}{dx^2} - \alpha^2 X = 0 , \quad \alpha \neq 0 , \tag{4}$$

and

$$\frac{d^2Y}{dy^2} + \alpha^2Y = 0 , \ \alpha \neq 0 . \tag{5}$$

[6 marks]

From (2) and (3), deduce the boundary conditions associated with (4) and (5). Hence show that the eigenvalues of (4) and (5) are

$$\alpha = n$$
, $n = 0, 1, 2, \cdots$

and their associated eigenvectors are

$$X_n(x) = A_n \cosh(nx), Y_n(y) = D_n \sin(ny)$$
.

[10 marks]

(b) Finally, show that the solution of the boundary value problem (1)-(3) can be expressed as

$$V(x,y) = \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{1 - \cos(n\pi)}{n} \frac{\cosh(nx)}{\cosh(nL)} \sin(ny) .$$

[Hint: you may assume that $\int_0^{\pi} \sin(ny)\sin(ky)dy = \frac{\pi}{2}$, if n = k, and 0 otherwise.]

6. The flow of heat in a thin bar of length l is governed by the heat equation

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2} \tag{6}$$

where κ is a strictly positive constant (thermal diffusivity). This equation is subject to the boundary conditions

$$u(0,t) = u(l,t) = 0$$
,

together with the initial condition

$$u(x,0) = x(l-x) .$$

(a) Show, using separation of variables u(x,t) = X(x)T(t), that (6) decouples into

$$\frac{d^2X}{dx^2} + \alpha^2X = 0 , \quad \alpha \neq 0 , \tag{7}$$

and

$$\frac{dT}{dt} + \kappa \alpha^2 T = 0 , \ \alpha \neq 0 . \tag{8}$$

[4 marks]

Hence show that the eigenvalues of (7) and (8) are

$$\alpha_n = \frac{\pi}{l}n , n = 0, 1, 2, \cdots$$

and their associated eigenvectors are

$$X_n(x) = B_n \sin(\alpha_n x), T_n(t) = C_n \exp(-\alpha_n^2 \kappa t).$$

[10 marks]

(b) Finally, show that the solution of the heat equation (6) can be expressed here as

$$u(x,t) = \frac{8l^2}{\pi^3} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^3} \sin\left(\frac{(2n+1)\pi x}{l}\right) \exp\left(\frac{-(2n+1)^2 \pi^2 \kappa t}{l^2}\right) .$$

[Hint: you may assume that $\int_0^l \sin\left(\frac{\pi nx}{l}\right) \sin\left(\frac{\pi mx}{l}\right) dx = \frac{l}{2}$, if n=m, and 0 otherwise. You may also integrate twice by parts to show that $\int_0^l x \left(l-x\right) \sin\left(\frac{\pi mx}{l}\right) dx = \frac{4l^3}{(m\pi)^3}$ if m is odd, and 0 otherwise.]

[11 marks]