PAPER CODE NO. MATH283

JANUARY 2001 EXAMINATIONS

Bachelor of Engineering: Year 2
Bachelor of Science: Year 2
Master of Engineering: Year 2
Master of Physics: Year 2

FIELD THEORY AND PARTIAL DIFFERENTIAL EQUATIONS

TIME ALLOWED: Two Hours

INSTRUCTIONS TO CANDIDATES

Attempt FOUR questions only. All questions are of equal value.

In this paper $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$ represent unit vectors parallel to the x, y and z axes respectively.

1. (a) Given that

$$\phi(x, y, z) = x^2 + y^2 + 2z^2 \quad ,$$

find $\nabla \phi$. Hence calculate the outward pointing unit normal to the ellipsoid

$$x^2 + y^2 + 2z^2 = 10$$

at the point (2, 2, 1). Use this to find the cartesian equation of the tangent plane at this point.

[13 marks]

(b) Calculate the divergence of the vector function

$$\mathbf{v} = \frac{\mathbf{r}}{r^3} \quad ,$$

where $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ and $r = |\mathbf{r}|$.

[12 marks]

2. (a) Evaluate the path integral

$$\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{dr}$$
,

where

$$\mathbf{F} = (2x + yz)\hat{\mathbf{i}} + (2y + xz)\hat{\mathbf{j}} + (2z + xy)\hat{\mathbf{k}}$$

and the curve C is the straight line starting at the point (1,1,1) and finishing at (0,0,0).

[10 marks]

(b) State Gauss's theorem for a differentiable vector field \mathbf{F} defined over a volume τ with bounding surface S.

[5 marks]

The region τ is the hemi-spherical volume which is enclosed by the

surface $x^2 + y^2 + z^2 = 1$ and the plane z = 0, and lies above the (x, y) plane.

Sketch τ and, using Gauss's theorem or otherwise, evaluate the surface integral

$$\int \int_{S} (x\hat{\mathbf{i}} + 4y\hat{\mathbf{j}} + z\hat{\mathbf{k}}) \cdot d\mathbf{S}$$

where S is the bounding surface of τ .

[10 marks]

3. State Stokes' theorem for a differentiable vector field \mathbf{F} over a surface S bounded by a closed curve C.

[5 marks]

Calculate the curl of the vector field

$$\mathbf{F} = yz^2\hat{\mathbf{i}} + 2xz\hat{\mathbf{j}} + xy^2\hat{\mathbf{k}} .$$

[5 marks]

Evaluate the surface integral

$$\int \int_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$$

where S is the plane surface bounded by the circular path

$$x^2 + y^2 = 1$$
 , $z = 1$.

[7 marks]

Evaluate the path integral

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} ,$$

where C is the boundary of the surface S above, traversed in the anti-clockwise direction. (Hint: you may use the parameters $x=\cos t,$ $y=\sin t,$ z=1, where $0\leq t\leq 2\pi$). Hence verify Stokes' theorem in this case.

4. Show that the general solution to the differential equation

$$\frac{d^2X}{dx^2} - \alpha^2 X = 0$$

is, when $\alpha \neq 0$,

$$X = A \cosh(\alpha x) + B \sinh(\alpha x)$$
.

[5 marks]

A scalar function V(x,y) obeys Laplace's equation

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$$

in the region $(0 \le x \le \pi), (0 \le y \le \pi)$, and is subject to the boundary conditions

$$V(x,0) = V(x,\pi) = V(0,y) = 0 ,$$

$$V(\pi,y) = \frac{1}{2}\sin(4y) .$$

Use separation of variables to show that

$$V(x,y) = \frac{1}{2} \frac{1}{\sinh(4\pi)} \sinh(4x) \sin(4y) .$$

[20 marks]

5. Find the eigenvalues and eigenfunctions of the boundary value problem

$$\frac{d^2X}{dx^2} + \alpha^2X = 0 , \quad X(0) = X(\pi) = 0 .$$

[10 marks]

The flow of heat in a thin bar of length π is governed by the heat equation

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2}$$

and is subject to the boundary conditions $u(0,t)=u(\pi,t)=0$, together with the inital condition

$$u(x,0) = \begin{cases} x, & 0 \le x \le \pi/2 \\ x - \pi, & \pi/2 < x \le \pi \end{cases}.$$

Show, using separation of variables, that

$$u(x,t) = -\sum_{n=1}^{\infty} \frac{2}{n} \cos\left(\frac{n\pi}{2}\right) \sin(nx) e^{-n^2 \kappa t} .$$

[15 marks]