THE UNIVERSITY
 of LIVERPOOL

SECTION A

1.

Consider the following real-valued function

$$
f(x)=\cos (x)-x .
$$

(i) Compute $f^{\prime}(x)$ and explain why $f(x)$ has only one root in $(0,1)$. [3 marks]
(ii) Use 2 steps of the Secant method to find an approximate solution to $f(x)=0$, starting from $x^{(0)}=0, x^{(1)}=1$. (Keep at least 4 decimal digits in calculations.)
2.

For the following three simultaneous nonlinear equations in x_{1}, x_{2}, x_{3}

$$
\left\{\begin{array}{l}
\ln \left(x_{1} / 2\right)+x_{2}=0, \\
x_{1} x_{3}+1=0, \\
x_{2}^{2}+5 x_{3}^{2}-1=0 .
\end{array}\right.
$$

(i) Work out the general Jacobian matrix, J.
(ii) Set up the general formula for using the Newton-Raphson method with some initial guess $\mathbf{x}^{(0)}$. (Do NOT invert any matrices.)
(iii) At the point $\mathbf{x}^{(0)}=[2,0,-1 / 2]^{T}$, compute the Jacobian matrix J and carry out 1 step of the Newton Raphson method.

THE UNIVERSITY

of LIVERPOOL
3.

Consider the linear system $A x=b$ where

$$
A=\left(\begin{array}{ccc}
2 & 0 & 4 \\
4 & 3 & 5 \\
0 & -3 & 4
\end{array}\right), b=\left(\begin{array}{l}
-2 \\
-1 \\
-4
\end{array}\right) .
$$

(i) Solve it by Gaussian elimination.
(ii) Hence find the remaining entries L_{32}, D_{11} and M_{23} in the LDM decomposition of A :

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & L_{32} & 1
\end{array}\right)\left(\begin{array}{ccc}
D_{11} & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & M_{23} \\
0 & 0 & 1
\end{array}\right) .
$$

(iii) Use the $L D M$ decomposition to solve

$$
\left(\begin{array}{ccc}
2 & 0 & 4 \\
4 & 3 & 5 \\
0 & -3 & 4
\end{array}\right) x=\left(\begin{array}{c}
4 \\
11 \\
-2
\end{array}\right) .
$$

4.

(a) For the following matrix

$$
A=\left(\begin{array}{ccc}
37 & 1 & 2 \\
1 & -57 & 5 \\
2 & 5 & 22
\end{array}\right)
$$

use the Gerschgorin theorem to locate all three eigenvalues and determine if the matrix is SPD (symmetric positive definite).
[6 marks]
(b) Let $B=A-\gamma I$. If the shifted inverse power method (for A with the shift $\gamma=3$) produces the converging sequence of μ_{j} such that

$$
\lim _{j \rightarrow \infty} \mu_{j}=\mu=3
$$

which eigenvalue $\lambda(B)$ and which corresponding eigenvalue $\lambda(A)$ have been found?

THE UNIVERSITY
 of LIVERPOOL

5.

State both the explicit and implicit Euler methods for the following general initial value problem.

$$
\left.\frac{d y}{d x}=f(x, y(x)), \quad y(0)\right)=y_{0}
$$

Use the explicit Euler method to solve the initial value problem

$$
\frac{d y}{d x}=\ln (x+y), \quad y(0)=2
$$

to obtain $\mathrm{y}(0.2)$ with the step length $h=0.1$. (Keep at least 4 decimal places in calculations.)
6.

Given the linear system $A x=b$ with

$$
A=\left(\begin{array}{cccc}
4 & 2 & 0 & 0 \\
2 & 4 & 1 & 0 \\
0 & 1 & 5 & -1 \\
0 & 0 & -1 & 2
\end{array}\right), b=\left(\begin{array}{l}
2 \\
0 \\
2 \\
1
\end{array}\right) .
$$

write out three equations by the Gauss-Seidel (GS) method to obtain the new iterate $x^{(n+1)}$ from the current iterate $x^{(n)}$. Carry out 2 iterations starting from $x^{(0)}=[1,0,0,1]^{T}$. (Keep 2 decimal places in calculations.)
Will this method converge? (Explain your answer)

THE UNIVERSITY
 of LIVERPOOL

SECTION B

7.

[15 marks]
State the shifted inverse power method to compute an eigenvalue of a matrix A near a given value γ.
Use the shifted inverse power method for 2 steps to estimate both the eigenvalue near $\gamma=7$ and its corresponding eigenvector for the following matrix:

$$
A=\left(\begin{array}{ccc}
3 & 0 & 1 \\
2 & -1 & -1 \\
0 & 1 & 7
\end{array}\right)
$$

Start the iteration from $x^{(0)}=[0,0,1]^{T}$ and keep at least 4 decimal places throughout your calculations.
You may use the $L U$ factorization for $(A-7 I)$ i.e.

$$
(A-7 I)=\left(\begin{array}{ccc}
-4 & 0 & 1 \\
2 & -8 & -1 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
0 & -1 / 8 & 1
\end{array}\right)\left(\begin{array}{ccc}
-4 & 0 & 1 \\
0 & -8 & -1 / 2 \\
0 & 0 & -1 / 16
\end{array}\right)
$$

8.

Consider the solution of the following boundary value problem, by the usual finite difference method with 3×3 boxes, i.e. 4 interior and uniformly distributed mesh points:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=2(x+y)^{2}, \quad p=(x, y) \in \Omega
$$

where the domain is the square $\Omega=[0,0.3] \times[0,0.3] \in R^{2}$, with the Dirichlet boundary condition $u=x$ given.
(i) Sketch the computational domain and compute the boundary values.
(ii) Set up the linear system for the four interior unknowns (without having to solve it). Keep at least 4 decimal places throughout your calculations.

THE UNIVERSITY
 of LIVERPOOL

9.

(a) Compute the Lagrange interpolating polynomial $y=P_{3}(x)$ of degree 3 that passes through these 4 points $\left(x_{j}, y_{j}\right)$

$$
(0,2),(\sqrt{2}, 3),(-1, \sqrt{7}),(5, \sqrt{13})
$$

(b) The three point quadrature formula can be written as

$$
\int_{-1}^{1} f(x) d x=w_{0} f\left(x_{0}\right)+w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)
$$

where $x_{0}=-\sqrt{15} / 5, x_{1}=0, x_{2}=\sqrt{15} / 5$.
Find suitable weights w_{j} (in exact arithmetic) so that the rule becomes a Gauss type, i.e. the rule is exact for degree $0,1,2$ polynomials.
[5 marks]
Adapt the above rule designed for $[-1,1]$ to approximate (keeping at least 4 decimal digits in calculations)

$$
I=\int_{0}^{1} \frac{3 x^{3} d x}{\sqrt{2+10 x^{4}}}
$$

[7 marks]

THE UNIVERSITY
of LIVERPOOL
10.

Consider the linear system $A x=b$ with

$$
A=\left(\begin{array}{cccc}
-1 & 2 & 0 & 1 \\
3 & 4 & 10 & -1 \\
2 & 5 & 2 & 2 \\
7 & -1 & -1 & 3
\end{array}\right), b=\left(\begin{array}{c}
-2 \\
14 \\
2 \\
3
\end{array}\right) .
$$

(i) Use the matrix form of the Gauss elimination method

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -2 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -9 / 10 & 1 & 0 \\
0 & -13 / 10 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
7 & 0 & 0 & 1
\end{array}\right) A \\
& =\left(\begin{array}{cccc}
-1 & 2 & 0 & 1 \\
0 & 10 & 10 & 2 \\
0 & 0 & -7 & 11 / 5 \\
0 & 0 & 0 & 3
\end{array}\right),
\end{aligned}
$$

to form both the $A=L U$ and the $A=L D M$ decompositions. [5 marks]
(ii) Use the $L U$ decomposition of A to find the solution x.
(iii) Compute $\|A\|_{\infty}$ and $\|b\|_{1}$. Using $\left\|A^{-1}\right\|_{\infty}=8 / 3$, find the ∞-norm condition number, $\kappa_{\infty}(A)$.

THE UNIVERSITY
 of LIVERPOOL

11.

Given that $A x=b$, where

$$
A=\left(\begin{array}{ccc}
5 & -1 & 2 \\
1 & -3 & -1 \\
1 & 0 & 7
\end{array}\right), \quad b=\left(\begin{array}{c}
5 \\
11 \\
7
\end{array}\right) .
$$

Using exact arithmetic (i.e. fractions):
(i) Write down the 3 equations for the 3 components of the vector $x^{(n+1)}$ for the Jacobi iteration method and carry out 2 iterations starting from $x^{(0)}=\mathbf{0}$. Find the iteration matrix T_{J} and the vector c_{J} such that

$$
x^{(n+1)}=T_{J} x^{(n)}+c_{J} .
$$

(ii) Find $(L+D)^{-1}$, where L and D are the lower diagonal and the diagonal parts of A respectively. Hence compute the iteration matrix $T_{G S}$ of the Gauss-Seidel iteration method such that

$$
x^{(n+1)}=T_{G S} x^{(n)}+c_{G S} .
$$

(iii) What necessary and sufficient conditions can you use to check whether each of the Jacobi and Gauss-Seidel Iteration Methods converge or not?
[1 marks]

