SAMPLE SOLUTIONS M266 [May 2005]

$E=$ action/ ${ }^{\text {anppatation }} \quad A=$ Answer
QI
At points $x=2, \frac{5}{2}$, test

$$
\begin{aligned}
& f(2)=0.7269>0 \\
& f(2.5)=-0.20067<0
\end{aligned}
$$

$\therefore[2,2.5]$ contains one root of $f(x)$.
Next differentiate to get

$$
\begin{aligned}
f^{\prime}(x) & =-2+\frac{1}{x+2}-\frac{1}{x+3} \\
& =-\frac{2(x+5 / 2)^{2}-3 / 2}{(x+2)(x+3)} .
\end{aligned}
$$

With $x^{(0)}$ given, the we takes the form

$$
\begin{aligned}
& x^{(\alpha+1)}=x^{(1)}=f\left(x^{(0)}\right) / f^{\prime}\left(x^{(0)}\right) \\
& \text { Given } x^{(0)}=2.5 \\
& \phi^{(1)}=2.39760 \quad \text { mb } \\
& x^{(1)}=2.39755 \quad \text { Fr }+A_{2}+A_{2} \quad \\
& x^{(2)} \quad
\end{aligned}
$$

QR

$$
\begin{aligned}
& \left(\begin{array}{ccc}
-3 & -6 & 12 \\
-2 & -1 & 2 \\
6 & 13 & -21
\end{array}\right) \xrightarrow[R_{3}=R_{3}+2 R_{1}]{R_{2}=R_{2}-\frac{2}{3} R_{1}}\left(\begin{array}{ccc}
-3 & -6 & 12 \\
0 & 3 & -6 \\
0 & 1 & 3
\end{array}\right) \\
& \xrightarrow[R_{3}=R_{3}-\frac{1}{3} R_{2}]{\left(\begin{array}{ccc}
-3 & -6 & 12 \\
0 & 3 & -6 \\
0 & 0 & 5
\end{array}\right)=U} \frac{M 5}{=A 4+A 1}
\end{aligned}
$$

Q3 The intersection is estimated as $(-1.6,2.1)$ which is closer $t(-2,3)$.
Non consider the Ne method

$$
\begin{aligned}
& X^{(k+1)}=X^{(k)}-J^{-1}\binom{f_{1}}{f_{2}} \quad=\frac{m 5}{F_{2}+F_{3}} \\
& =x^{(k)}-\left(\begin{array}{ll}
\left.3 x_{1}^{(k)}\right)^{2} & 2 x_{2}^{(k)} \\
4 x_{1}^{(k)} & 2 x_{2}^{(k)}
\end{array}\right)^{-1}\binom{x_{1}^{(k)}+x_{2}^{3} x^{(k)}-2}{x_{1}^{(k)}+x_{2}^{4(k)^{2}}-9} \\
& \text { With } x^{(0)}=\binom{-1}{2} \\
& J^{-1}=\left(\begin{array}{cc}
3 & 4 \\
-4 & 4
\end{array}\right)^{-1}=\frac{1}{28}\left(\begin{array}{cc}
4 & -4 \\
4 & 3
\end{array}\right) \quad \frac{m 5}{E_{2}+F_{2}+t_{2}} \\
& X^{(1)}=X^{(0)}-J^{-1}\binom{1}{-4}=\binom{-1.7143}{2.2857} .
\end{aligned}
$$

Qu The GS method for $x^{n} \rightarrow x^{n+1}$ is

$$
\left\{\begin{array}{l}
3 x_{1}^{(n+1)}=20-x_{2}^{(n)} \\
4 x_{2}^{(n+1)}=19-x_{1}^{(n+1)} 2 x_{3}^{(n)} \\
4 x_{3}^{(n)}=29-2 x_{2}^{(k+1)}+x_{4}^{(n)} \\
3 x_{4}^{(n+1)}=-5+x_{3}^{(n+1)}, n=0,1,2 \cdots
\end{array}\right.
$$

Herate with $X^{(0)}=\left(\begin{array}{c}X^{(0)} \\ x^{(0)} \\ x_{10}^{(t) 0} \\ x_{4}^{(2)}\end{array}\right)=\left(\begin{array}{l}9 \\ 0 \\ 9 \\ 9 \\ 0\end{array}\right) \quad \frac{\text { ms }}{A_{3}+1}$

$$
X^{(1)}=\left(\begin{array}{c}
6.6667 \\
-1.4167 \\
1.9583 \\
0.9861
\end{array}\right), X^{(2)}=\left(\begin{array}{c}
2.1389 \\
-1.0139 \\
8.0035 \\
1.00012
\end{array}\right)
$$

Q5 Obtain the Gerschgoin disks as

$$
\left\{\begin{array}{l}
\left|\lambda_{1}-15\right| \leq 1 \\
\left|\lambda_{2}-2\right| \leq 1 \\
\left|\lambda_{3}+8\right| \leq 2
\end{array}\right.
$$

Since all disks are separated, $t(A)$ are $=$ real and the appropriate choice nay be

$$
\left\{\begin{array}{l}
\gamma_{1}=15 \\
\gamma_{2}=2 \\
\gamma_{3}=-18
\end{array}\right. \text { for the eivalues by IPM. }
$$

Q6 The Las range polynomial is

$$
\begin{aligned}
P_{3}(x) & =\sum_{i=1}^{4} y_{i} \prod_{\substack{j=1 \\
j \neq i}}^{4} \frac{x-x_{j}}{x_{i}-x_{j}} \\
& =-\frac{(x-2)(x-4)(x-5)}{6}+\frac{4(x-1)(x-4)(x-5)}{3} \\
& -\frac{2(x-1)(x-2)(x-5)}{3}+\frac{(x-1)(x-2)(x-4)}{2} \\
= & x^{3}-\frac{29}{3} x^{2}+28 x-\frac{52}{3} \quad \text { (optional }
\end{aligned}
$$

QR

$$
\begin{array}{r}
\frac{d y}{d x}=f(x, y), \quad y(0)=y_{0}, \begin{array}{l}
x_{j} \\
=j k, \\
y\left(j_{j}\right) \\
\approx y_{j}
\end{array}, ~
\end{array}
$$

Eapliat Euler
Implicit Euler

$$
\left.y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)\right\} m_{2}
$$

$$
\text { lev } \left.y_{n+1}=y_{n}+h f\left(x_{n+1}, y_{n+1}\right)\right\}
$$

$$
n=0,12, \cdots
$$

With $h=0.1, x_{0}=0$, for $f=\sin (x+9-2)=$

$$
\begin{aligned}
& y_{1}=y_{0}+h f\left(x_{0}, y_{0}\right)=3.084 \\
& y_{2}=y_{1}+h f\left(x_{1}, y_{1}\right)=3.1768 \approx y(0.2) \frac{m_{0}-}{A_{2}}+\frac{1}{A_{2}}
\end{aligned}
$$

Section B
QB

$$
\left.\begin{array}{l}
i) L=\left(\begin{array}{ccc}
0 & & \\
1 & 0 & \\
2 & 0 \\
& -1 & 0
\end{array}\right), D=\left(\begin{array}{lll}
3 & & \\
4 & \\
& 4 & 3
\end{array}\right) U=\left(\begin{array}{ll}
0 & 1 \\
0 & 2 \\
0 & -1 \\
0
\end{array}\right) \\
\\
\\
\\
\\
\\
\\
2
\end{array}\right)
$$

$$
0(L+D)^{-1}=\left(\begin{array}{llll}
\frac{1}{4} & & & \\
& \frac{1}{2} & 1 \\
& -\frac{1}{3} & 1
\end{array}\right)^{-1} D^{-1}
$$

It remains to find the st inverse from

$$
\begin{aligned}
& \begin{array}{l}
\left(\begin{array}{cccc}
\frac{1}{4} & 1 & & \\
& \frac{1}{2} & 1 & \\
& & -\frac{1}{3} & 1
\end{array}\right)=\left(\begin{array}{cccc}
\frac{1}{4} & & & \\
& 1 & & \\
& \frac{1}{2} & 1 & \\
& & -\frac{1}{3} & 1
\end{array}\right)\left(\begin{array}{llll}
1 & & \\
1 & 1 & \\
\frac{1}{2} & 1 \\
& & 1
\end{array}\right)\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& 1 & \\
& & -\frac{1}{3}
\end{array}\right) \\
\text { and }
\end{array} \\
& \begin{aligned}
\left(\begin{array}{ccc}
\frac{1}{4} & 1 & \\
& \frac{1}{2} & 1 \\
& & -\frac{1}{3} \\
& 1
\end{array}\right)^{-1} & =\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& 1 & \\
& \frac{1}{3} & 1
\end{array}\right)\left(\begin{array}{lll}
1 & & \\
& 1 & \\
-\frac{1}{2} & 1 \\
& & 1
\end{array}\right)\left(\begin{array}{ccc}
1-\frac{1}{4} & 1 & \\
& & 1 \\
& & 1
\end{array}\right) \\
&
\end{aligned} \\
& =\left(\begin{array}{cccc}
-\frac{1}{4} & 1 & & \\
\frac{1}{8} & -\frac{1}{2} & 1 \\
\frac{1}{24} & -\frac{1}{6} & \frac{1}{3} & 1
\end{array}\right) \\
& (L+D)^{-1}=\left[\begin{array}{cccc}
\frac{1}{3} & & & \\
-\frac{1}{12} & \frac{1}{4} & & \\
\frac{1}{24} & -1 / 8 & \frac{1}{4} & \\
\frac{1}{72} & -1 / 24 & 1 / 12 & \frac{1}{3}
\end{array}\right] \text {. }
\end{aligned}
$$

Further from $(\angle+D) X^{k+1}=-U x^{k}+b$
$[$ Note $A x=(L+D) x+U x]$
We have $T_{G S}=-(L+D)^{-1} U$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
-\frac{1}{3} & & \\
-1 / 12 & 1 / 4 & \\
2 / 24 & -1 / 8 & \frac{1}{4} \\
1 / 72 & -1 / 24 & 1 / 2
\end{array}\right]\left[\begin{array}{ccc}
0-1 \\
0 & -2 \\
0 & -1 / 1 \\
0 & -1 / 3 & 0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
0 & -1 / 3 & 0 & 0 \\
0 & 1 / 12 & -1 / 2 & 0 \\
0 & -1 / 1 / 4 & 1 / 41 / 4 \\
0 & -1 / 72 & 1 / 12 & 1 / 12
\end{array}\right] \text {. }
\end{aligned}
$$

$m 2$
ii) The Gerschgorin disks are

$$
\left\{\begin{array}{l}
\left|\lambda_{1}\right| \leqslant \frac{1}{3} \\
\left|\lambda_{2}-\frac{1}{12}\right| \leqslant \frac{1}{2} \rightarrow\left|\lambda_{2}\right| \leqslant \frac{7}{12}=0.5833 \\
\left|\lambda_{3}-\frac{1}{4}\right| \leqslant \frac{1}{2_{4}}+\frac{1}{8}=0.1667 \\
\left|\lambda_{4}-\frac{1}{2}\right| \leqslant \frac{1}{7_{2}}+\frac{1}{12}=0.0972 \quad \frac{m 6}{=F_{4}+A_{2}}
\end{array}\right.
$$

So $\left|\lambda G_{G S}\right| \leqslant 0.5833<1$ and the GS method must converge.
QQ i) Repeat Q2 for reef. reduction

$$
U=\left(\begin{array}{ccc}
-3 & -6 & 12 \\
& 3 & -6 \\
& 5
\end{array}\right), L=\left(\begin{array}{cc}
\frac{1}{3} & 1 \\
-2 & \frac{1}{3}
\end{array}\right)
$$

signs changed is $m_{i j}$

Q9 i) Obtain $\frac{L}{}$ from changing signs of $l_{i j}$
$m_{2}\left\{\begin{array}{l}\mathcal{L}=\left(\begin{array}{ccc}1 & & \\ -1 / 3 & 1 / 3 & 1 \\ 0 & 1 / 3 & -2 / 3 \\ \hline\end{array}\right) \text { and } U=\left(\begin{array}{cccc}-3 & -6 & 12 & 0 \\ -3 & 6 & 0 \\ & -1 & -1 \\ & -42\end{array}\right) \\ \text { Sot } U=D M\end{array}\right.$
for $A=L U$ decomposition. Set $U=D M$.
$m 3$

$$
\begin{aligned}
& \text { Then } D=\left(\begin{array}{lll}
-3 & & \\
& -3 & \\
& & -1 \\
& & -42
\end{array}\right) \text { and } M=\left(\begin{array}{cccc}
1 & 2 & -4 & 0 \\
& 1 & -2 & 0 \\
& & 1 & 1 \\
& & & 1
\end{array}\right) .
\end{aligned}
$$

for $A=\angle D M$.
ii) Solve $A x=b$ via $\angle U x=b$ or $\angle y=b, U_{x}=y$:

$$
\text { So } y=\left(\begin{array}{c}
75 \\
42 \\
-5 \\
0
\end{array}\right) \quad \text { and } x=\left(\begin{array}{c}
3 \\
-4 \\
5 \\
0
\end{array}\right) \quad\left(\begin{array}{l}
m 4 \\
=A_{2}+A_{2}
\end{array}\right.
$$

iii) $\|A\|_{\infty}=\max (21,4,3,39)=39,\|b\|_{1}=75+17+9+52=153$.

$$
\begin{aligned}
\therefore\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\frac{209}{189} \times 39=\frac{209}{63} \times 13 & =\frac{2717}{63}(\approx 43.127) \\
& =K_{6}(A) . \quad m_{6}=A_{4}+A_{3}
\end{aligned}
$$

Q10 TheSIPM is the following

$$
z=z^{(0)}
$$

Iterate $\left\{\begin{array}{l}(A-\gamma I) y=z \\ \mu=y^{(m)}\end{array}\right.$
$\mu \longrightarrow e^{i}$ value of $(A-\gamma I)^{-1}$ or $\frac{1}{\lambda(A)-\lambda)}$ $z \rightarrow$ eirector

With $z=z^{(0)}=\left(\begin{array}{l}0 \\ 0 \\ 9\end{array}\right)$ and $\gamma=-8$,
the LU factorization is used for
Solving $(A+\gamma I) y=z$ so
Step 1 From $(A+8 I) y=z$

$$
\begin{aligned}
& \text { We set } \\
& \left\{\begin{array}{l}
y=(-6.9231,-15.9231,159.2308)^{\top} \mid A_{\}} \\
\mu=159.2308 \\
z=y / \mu=(-0.0435,-0.1,1)^{\top}
\end{array}\right.
\end{aligned}
$$

Steps From $(A+8 I) y=z$

$$
\left\{\begin{array}{l}
y=(-0.7649,-1.7649,17.5488)^{\top} \\
\mu=17.5488 \\
z=y / \mu=(-0.0436,-0.1006,1)^{\top}
\end{array} A_{4}\right.
$$

$$
\begin{aligned}
\circ \quad M=\frac{1}{\lambda(A)+8} \text { and } \begin{aligned}
\lambda(A) & =-8+\frac{1}{M} \cdots \quad m_{2} \\
& =-7.9430
\end{aligned} \quad \text { and } \quad
\end{aligned}
$$

z as èvector
*
QI

First eqn at $\left(x_{1}, y_{1}\right)=(0,0.1)$

$$
\left(\begin{array}{c}
\text { Note } 4=\Delta x \\
=0 . y \\
=0.1
\end{array}\right)
$$

$$
\left(1+y_{1}\right) \frac{u_{21}+5-2 u_{11}}{h^{2}}+\left(1+x_{1}\right) \frac{u_{12}+5-2 u_{11}}{h^{2}}=\left(x_{1}+y_{1}+1\right)^{2}
$$

i.e.

$$
110 u_{21}-420 u_{11}+100 u_{12}=1.21-1050=-1048.79
$$ as voified.

Ind Eqn at $\left(x_{2}, y_{1}\right)=(0,1,0.1)$

$$
\begin{aligned}
& \left(1+y_{1}\right) \frac{u_{11}+5-2 u_{21}}{h^{2}}+\left(1+x_{2}\right) \frac{u_{22}+5-2 u_{21}}{h^{2}}=\left(x_{2}+y_{1}+1\right)^{2} \\
& \text { i.e. } 110 u_{11}-440 u_{21}+110 u_{22}=-1098.56 \text {, }
\end{aligned}
$$

Third eqn at $\left(x_{1}, y_{2}\right)=(0,0.2)$

$$
120 u_{22}-460 u_{12}+100 u_{11}=-1098.56
$$

Fourth eqn at $\left(x_{2}, y_{2}\right)=(0.1,0.2)$ as

$$
120 u_{12}-460 u_{22}+110 u_{21}=-1498.31 .
$$

So the LS is

$$
\left[\begin{array}{cccc}
-420 & 110 & 100 & 0 \\
110 & -440 & 0 & 110 \\
100 & 0 & -460 & 120 \\
0 & 110 & 120 & -460
\end{array}\right]\left(\begin{array}{l}
u_{11} \\
u_{21} \\
u_{12} \\
u_{22}
\end{array}\right)=\left(\begin{array}{c}
-1048.79 \\
-1098.56 \\
-1098.56 \\
-1498.31
\end{array}\right)
$$

Quiz Let $f=x^{\circ}=1 \longrightarrow$

$$
\begin{aligned}
& \int_{-1}^{1} f d x=2=w_{0}+w_{1}+w_{2} \\
& f=x^{1} \frac{\int_{-1}^{1} f d x=0=w_{2}-w_{0}}{f=x^{2}} \int_{-1}^{1} f d x=\frac{2}{3}=w_{0}+w_{2}
\end{aligned}
$$

Soling the 3 equations gives

$$
W_{0}=W_{2}=\frac{1}{3} \text { and } W_{1}=\frac{4}{3}
$$

\therefore The rule is $\int_{-1}^{1} f(x) d x=\frac{1}{3}[f(-1)+4 f(0)+f(1)]$.
(Note: Different from Trapezium -
This is the Simpson's rule $>$

$$
\begin{aligned}
& I_{1}=\int_{-1}^{1} \frac{\cos x}{\sqrt{x^{2}+2}} d x=\frac{\sqrt{3}}{9} \cos (-1)+\frac{2 \sqrt{2}}{3} \cos 0+\frac{\sqrt{3}}{9} \cos 1 \\
& =1.15077 \\
& 3+F \\
& =m 5 \\
& I_{2}=\int_{0}^{3} f(x) d x \frac{\frac{L e t}{y}=\frac{2 x}{3}-1}{x=\frac{3}{2}(y+1)} \frac{3}{2} \int_{-1}^{1} \frac{\cos \left(\frac{3(y+1)}{2}\right)}{\sqrt{\sqrt{4}(y+1)^{2}+2}} d y
\end{aligned}
$$

$$
\begin{aligned}
& =0.27293
\end{aligned}
$$

Q13 Firstly $\int_{0}^{1} f(x) d x=\left(\int_{0}^{\frac{1}{2}}+\int_{\frac{1}{2}}^{1}\right) f(x) d x$
Trapezium

$$
\frac{1}{4}\left[f(0)+2 f\left(\frac{1}{2}\right)+f(1)\right]
$$

Secondly

$$
\int_{0}^{1} e^{x(y-2} u(y) d y=\frac{1}{4}\left[e^{-2} u(0)+2 e^{\frac{x}{2}-2} u\left(\frac{1}{2}\right)+e^{x-2} u(1)\right]_{m}
$$

So letting $u=\left(u(0), u\left(\frac{1}{2}\right), u(1)\right)^{\top}$ and
Collocating at $0, \frac{1}{2}$, give rise to

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
5-\frac{1}{4} e^{-2} & -\frac{1}{2} e^{-2} & -\frac{1}{4} e^{-2} \\
-\frac{1}{4} e^{-2} & 5-\frac{1}{2} e^{\frac{1}{4}-2} & -\frac{1}{4} e^{\frac{1}{2}-2} \\
-\frac{1}{4} e^{-2} & -\frac{1}{2} e^{\frac{1}{2}-2} & 5-\frac{1}{4} e^{1-2}
\end{array}\right] u=\left(\begin{array}{c}
3 \\
\frac{1}{2}+3 \\
1+3
\end{array}\right]_{\text {mic }}^{=A_{1} x}+} \\
& {\left[\begin{array}{ccc}
4.9662 & -0.0677 & -0.0338 \\
-0.0338 & 4.9131 & -0.0558 \\
-0.0338 & -0.116 & 4.9080
\end{array}\right] u=\left(\begin{array}{l}
3 \\
3.5 \\
4
\end{array}\right]} \\
& +\mathrm{RH}
\end{aligned}
$$

