THE UNIVERSITY
 of LIVERPOOL

SECTION A

1.

Consider the following real-valued function

$$
f(x)=\ln \left(\frac{1+x}{1-x}\right)+1 .
$$

(i) Compute $f^{\prime}(x)$ and verify that $f^{\prime}(x)>0$ in $(-1,1)$. How many roots can $f(x)$ have in $(-1,1)$?
(ii) Use 2 steps of the Newton-Raphson method to find an approximate solution to $f(x)=0$, starting from $x^{(0)}=0$.
(Keep at least 4 decimal digits in calculations.)
2.

Starting from $x^{(0)}=0$ and $x^{(1)}=-0.5$, solve the nonlinear equation

$$
\ln \left(\frac{1+x}{1-x}\right)+1=0
$$

using 2 steps of the Secant method. Compute the error in your approximation, given the exact solution is $x=(1-e) /(1+e)$. (Keep at least 4 decimal digits in calculations.)

3.

Sketch the following two simultaneous nonlinear equations in x_{1}, x_{2},

$$
\left\{\begin{array}{l}
x_{1}^{2}+x_{2}^{2}=4, \\
9\left(x_{1}-2\right)^{2}+x_{2}^{2}=1 .
\end{array}\right.
$$

Taking the initial guess $\mathbf{x}^{(0)}=(2,1)^{T}$, use 1 step of the Newton-Raphson method to find an approximate solution.

THE UNIVERSITY
 of LIVERPOOL

4.

Consider the linear system $A x=b$ with

$$
A=\left(\begin{array}{lll}
2 & 4 & 2 \\
1 & 0 & 3 \\
3 & 1 & 2
\end{array}\right), b=\left(\begin{array}{l}
6 \\
1 \\
4
\end{array}\right) .
$$

(i) Compute $\|A\|_{\infty}$ and $\|b\|_{1}$.
(ii) Solve it by Gaussian elimination.
(iii) Hence or otherwise find the LDM decomposition of A.
5.

For the following matrix A

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
5 & 12 & 3 \\
1 & 0 & -10
\end{array}\right)
$$

use the Gerschgorin theorem to decide which of the following three values

$$
-2,-11,50
$$

is closest to an eigenvalue of A.
6.
(i) Using the composite Trapezium rule (with 2 subintervals) approximate

$$
\int_{0}^{1} \cos (x+y) u(y) d y
$$

(ii) Using this approximation for the integral, set up the linear system to find the numerical solution of the following equation

$$
7 u(x)-\int_{0}^{1} \cos (x+y) u(y) d y=2 x+1 \quad x \in[0,1]
$$

Do not solve the system.

THE UNIVERSITY
 of LIVERPOOL

SECTION B

7.

[15 marks]
Use the shifted inverse power method for 2 steps to estimate both the eigenvalue near $\gamma=6$ and its corresponding eigenvector for the following matrix

$$
A=\left(\begin{array}{ccc}
9 & 0 & 1 \\
0 & 1 & 0 \\
1 & -14 & 8
\end{array}\right)
$$

Start the iteration from $\mathbf{x}^{(0)}=[-1,0,1]^{T}$ and keep at least 4 decimal places in your calculations.

You may use the result

$$
(A-6 I)^{-1}=\left(\begin{array}{ccc}
0.4 & 0.56 & -0.2 \\
0 & -0.2 & 0 \\
-0.2 & -1.68 & 0.6
\end{array}\right) .
$$

8.

(a) State both the explicit and implicit Euler methods for the following general initial value problem.

$$
\frac{d y}{d x}=f(x, y(x)), \quad y(0)=y_{0}
$$

Use the explicit Euler method to solve the initial value problem

$$
\frac{d y}{d x}=y^{2}-1+y e^{-x}, \quad y(0)=0
$$

to obtain $\mathrm{y}(0.5)$ with the step length $h=0.25$.
(b) Combine the nonlinear Newton-Raphson method with the implicit Euler method to solve

$$
\frac{d y}{d x}=y e^{-5 x}-y^{2}, \quad y(0)=1
$$

to obtain $\mathrm{y}(0.2)$ with the step length $h=0.1$. (Use no more than 2 iterations in each Newton-Raphson step, and keep at least 4 decimal places in your calculations.)
[7 marks]

THE UNIVERSITY
 of LIVERPOOL

9.

[15 marks]
Consider the solution of the following boundary value problem,

$$
-\left((1+x) \frac{\partial^{2} u}{\partial x^{2}}+(1+y) \frac{\partial^{2} u}{\partial y^{2}}\right)=(x+2 y+1), \quad p=(x, y) \in \Omega
$$

where the domain is the square $\Omega=[0,0.3] \times[-0.2,0.1] \in R^{2}$, with the Dirichlet boundary condition $u=0$ on all boundary points, to be solved by the usual finite difference (FD) method with 3×3 boxes, i.e. 4 interior and uniformly distributed mesh points. Verify that the FD equation at the point $\left(x_{1}, y_{1}\right)=(0.1,-0.1)$ is

$$
-1.1 u_{21}-4 u_{11}-0.9 u_{12}=0.009
$$

Find the remaining 3 FD equations and the final linear system (there is no need to solve the system).

10.

Consider the linear system $A x=b$ where

$$
A=\left(\begin{array}{ccc}
9 & 2 & 0 \\
2 & 8 & -3 \\
0 & -3 & 7
\end{array}\right), b=\left(\begin{array}{c}
13 \\
15 \\
1
\end{array}\right) .
$$

(i) Write out three equations for the 3 components of the vector $x^{(n+1)}$ for the Jacobi Iteration Method and carry out 2 iterations starting from $x^{(0)}=\mathbf{0}$. Keep 2 decimal places in your calculations. Find the iteration matrix T_{J} and the vector c_{J} such that

$$
x^{(n+1)}=T_{J} x^{(n)}+c_{J} .
$$

(ii) Find $(L+D)^{-1}$, where L and D are the lower diagonal and the diagonal parts of A respectively. Hence compute the iteration matrix $T_{G S}$ and the vector $c_{G S}$ such that

$$
x^{(n+1)}=T_{G S} x^{(n)}+c_{G S} .
$$

(iii) What necessary and sufficient conditions can you use to check whether each of the Jacobi and Gauss-Seidel Iteration Methods converge or not?

THE UNIVERSITY
 of LIVERPOOL

11.

Design a three point quadrature of the Gauss type

$$
\int_{-1}^{1} f(x) d x=w_{0} f\left(x_{0}\right)+w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)
$$

by choosing suitable weights w_{j} where $x_{0}=-1, x_{1}=0, x_{2}=1$. (Hint: the rule should be exact for degree $0,1,2$ polynomials.)

Use the rule you obtained to approximate the integral

$$
I=\int_{-1}^{1} \frac{\cos x d x}{\sqrt{x^{3}+5}} .
$$

Modify the rule to approximate the integral

$$
I=\int_{0}^{1} \frac{\cos x d x}{\sqrt{x^{3}+5}}
$$

(Keep at least 4 decimal places in all calculations.)

