# THE UNIVERSITY <br> of LIVERPOOL 

## SECTION A

1. Consider the following real-valued function

$$
f(x)=\cos (x)-x
$$

(i) Compute $f^{\prime}(x)$ and verify that $f^{\prime}(x)>0$ in $(0,1)$. How many roots can $f(x)$ have in $(0,1)$ ?
(ii) Use 2 steps of the Newton-Raphson method to find an approximate solution to $f(x)=0$, starting from $x^{(0)}=0$.
(Keep at least 4 decimal digits in calculations.)
(iii) Starting from $x^{(0)}=0$ and $x^{(1)}=1$, use 2 steps of the Secant method to find an approximate solution to $f(x)=0$. (Keep at least 4 decimal digits in calculations.) What advantage does the Secant method have over the Newton-Raphson method?
2. Sketch the following two simultaneous nonlinear equations in $x_{1}, x_{2}$,

$$
\left\{\begin{array}{l}
\left(x_{1}-1\right)^{2}+x_{2}^{2}=4, \\
\left(x_{1}-3\right)^{2}+\frac{1}{9} x_{2}^{2}=1
\end{array}\right.
$$

Taking the initial guess $x^{(0)}=(2,2)^{T}$, use 1 step of the Newton-Raphson method to find an approximate solution. (Keep at least 4 decimal digits in calculations.)
[10 marks]

## THE UNIVERSITY <br> of LIVERPOOL

3. Consider the linear system $A x=b$ with

$$
A=\left(\begin{array}{lll}
4 & 1 & 8 \\
1 & 0 & 3 \\
2 & 1 & 1
\end{array}\right), b=\left(\begin{array}{c}
0 \\
-1 \\
3
\end{array}\right) .
$$

(i) Solve it by Gaussian elimination using exact arithmetic (i.e. fractions).
(ii) Hence or otherwise find the LDM decomposition of $A$.
[6 marks]
4. Consider the matrix $A$

$$
A=\left(\begin{array}{ccc}
12 & 1 & 2 \\
4 & -2 & 1 \\
0 & 2 & 1
\end{array}\right)
$$

(i) Use the Gerschgorin theorem to locate the eigenvalues.
[4 marks]
(ii) Use two steps of the power method to estimate the dominant eigenvalue. Take the initial guess $z=[1,0,0]^{T}$. (Keep at least 2 decimal places in calculations.)
[6 marks]
5. Compute the Lagrange interpolating polynomial $y=P_{3}(x)$ of degree 3 that passes through these 4 points $\left(x_{j}, y_{j}\right)$

$$
(0,2),(\sqrt{2}, 3),(-1, \sqrt{7}),(5, \sqrt{13})
$$

What is the minimum degree polynomial that can pass through 6 arbitrarily chosen points?

## THE UNIVERSITY <br> of LIVERPOOL

6. State both the explicit and implicit Euler methods for the following general initial value problem.

$$
\frac{d y}{d x}=f(x, y(x)), \quad y(0)=y_{0} .
$$

Use the explicit Euler method to solve the initial value problem

$$
\frac{d y}{d x}=(x+y)^{2}+3, \quad y(0)=2
$$

to obtain $\mathrm{y}(0.2)$ with the step length $h=0.1$ (keep at least 4 decimal places in calculations). Compare your result with the exact solution:

$$
y(x)=-x+2 \tan (2 x+\pi / 4)
$$

Suggest how you could improve the accuracy of the numerical estimate.

## SECTION B

7. Use the shifted inverse power method for 2 steps to estimate both the eigenvalue near $\gamma=3$ and its corresponding eigenvector for the following matrix

$$
A=\left(\begin{array}{ccc}
-2 & 2 & -1 \\
0 & 7 & 0 \\
-1 & 3 & 3
\end{array}\right)
$$

Start the iteration from $z=[0,0,1]^{T}$ and keep at least 4 decimal places in your calculations. You may use the factorization

$$
(A-3 I)=L U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0.2 & 0.65 & 1
\end{array}\right)\left(\begin{array}{ccc}
-5 & 2 & -1 \\
0 & 4 & 0 \\
0 & 0 & 0.2
\end{array}\right)
$$

## THE UNIVERSITY <br> of LIVERPOOL

8. Consider the solution of the following boundary value problem, by the usual finite difference method with $3 \times 3$ boxes, i.e. 4 interior and uniformly distributed mesh points:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\left(1+x^{2}\right) \frac{\partial^{2} u}{\partial y^{2}}=\cos (10 y), \quad p=(x, y) \in \Omega
$$

where the domain is the rectangle $\Omega=[0,0.3] \times[0,0.3] \in R^{2}$, with the Dirichlet boundary condition $u=2 x$ given
(i) Sketch the computational domain and compute the boundary values.
(ii) Set up the linear system for the four interior unknowns (without having to solve it). Keep at least 4 decimal places throughout your calculations.
[10 marks]

## THE UNIVERSITY <br> of LIVERPOOL

9. Consider the linear system $A x=b$ where

$$
A=\left(\begin{array}{ccc}
-3 & 1 & 0 \\
2 & 10 & 1 \\
0 & 2 & 7
\end{array}\right), b=\left(\begin{array}{l}
3 \\
5 \\
7
\end{array}\right) .
$$

Using exact arithmetic (i.e. fractions):
(i) Write out three equations for the 3 components of the vector $x^{(n+1)}$ for the Jacobi Iteration Method and carry out 2 iterations starting from $x^{(0)}=$ $(0,0,0)^{T}$. Find the iteration matrix $T_{J}$ and the vector $c_{J}$ such that

$$
x^{(n+1)}=T_{J} x^{(n)}+c_{J} .
$$

(ii) Find $(L+D)^{-1}$, where $L$ and $D$ are the lower diagonal and the diagonal parts of $A$ respectively. Hence compute the iteration matrix $T_{G S}$ of the Gauss-Seidel iteration method.
[7 marks]
(iii) What necessary and sufficient conditions can you use to check whether each of the Jacobi and Gauss-Seidel iteration methods converge or not?

## THE UNIVERSITY <br> of LIVERPOOL

10. The three point quadrature formula can be written as

$$
\int_{-1}^{1} f(x) d x=w_{0} f\left(x_{0}\right)+w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right),
$$

where $x_{0}=-1, x_{1}=0, x_{2}=1$.
Find suitable weights $w_{j}$ (in exact arithmetic) so that the rule becomes a Gauss type, i.e. the rule is exact for degree $0,1,2$ polynomials.

Use the rule you have obtained to approximate the integral

$$
I=\int_{-1}^{1} \frac{e^{x} d x}{\sqrt{3+2 x^{3}}}
$$

(Keep at least 4 decimal digits in calculations.)

Modify the rule you obtained to approximate the integral

$$
I=\int_{0}^{2} \frac{e^{x} d x}{\sqrt{3+2 x^{3}}}
$$

(Keep at least 4 decimal digits in calculations.)
11. Consider the matrix $A$ :

$$
A=\left(\begin{array}{cccc}
2 & 5 & -1 & 0 \\
1 & 2 & 2 & 0 \\
0 & 0 & 4 & 1 \\
3 & 6 & 0 & -1
\end{array}\right)
$$

Using exact arithmetic (i.e. fractions), compute the $P A=L U$ decomposition of matrix $A$ with partial pivoting.

