THE UNIVERSITY
 of LIVERPOOL

SECTION A

1. Consider the following real-valued function

$$
f(x)=\ln \left(\frac{1-x}{1+x}\right)+1 .
$$

(i) Compute $f^{\prime}(x)$ and explain why $f(x)$ has exactly one root in $(0,1)$.
(ii) Use 2 steps of the Newton-Raphson method to find an approximate solution to $f(x)=0$, starting from $x^{(0)}=0$. (Keep at least 4 decimal digits in calculations.)
[4 marks]
(iii) Compute the error in the first and second steps, given the exact solution is

$$
x=\frac{e-1}{e+1} .
$$

Estimate the error in the third step, given that the Newton-Raphson method exhibits quadratic convergence.
2. Starting from $x^{(0)}=0$ and $x^{(1)}=0.5$, solve the nonlinear equation

$$
f(x)=\ln \left(\frac{1-x}{1+x}\right)+1=0
$$

using 2 steps of the Secant method. (Keep at least 4 decimal digits in calculations.) What is the minimum number of times the function $f(x)$ has to be evaluated for 2 steps of the Secant method?

THE UNIVERSITY
 of LIVERPOOL

3. For the following three simultaneous nonlinear equations in x_{1}, x_{2}, x_{3}

$$
\left\{\begin{array}{l}
4 x_{1}-x_{3}^{2}=0 \\
x_{2}^{2}+2 x_{1}^{2}-3=0 \\
x_{2} x_{3}-6 \cos \left(x_{2}+x_{3}\right)=0
\end{array}\right.
$$

(i) Work out the general Jacobian matrix, J.
(ii) Set up the general formula for using the Newton-Raphson method with some initial guess $x^{(0)}$. (Do NOT invert any matrices.)
[2 marks]
(iii) Carry out 1 step of the Newton Raphson method starting at the point $x^{(0)}=(1,-1,2)^{T}$. (Keep at least 4 decimal digits in calculations.)
[6 marks]

THE UNIVERSITY
of LIVERPOOL
4. Consider the linear system $A x=b$ where

$$
A=\left(\begin{array}{ccc}
2 & 1 & 0 \\
4 & 5 & 4 \\
2 & 10 & 11
\end{array}\right), b=\left(\begin{array}{c}
4 \\
12 \\
15
\end{array}\right) .
$$

(i) Solve it by Gaussian elimination.
(ii) Hence find the remaining entries L_{23}, D_{33} and M_{12} in the LDM decomposition of A :

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
L_{23} & 1 & 0 \\
1 & 3 & 1
\end{array}\right)\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & D_{33}
\end{array}\right)\left(\begin{array}{ccc}
1 & M_{12} & 0 \\
0 & 1 & 4 / 3 \\
0 & 0 & 1
\end{array}\right)
$$

(iii) Use the $L D M$ decomposition to solve

$$
\left(\begin{array}{ccc}
2 & 1 & 0 \\
4 & 5 & 4 \\
2 & 10 & 11
\end{array}\right) x=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right) .
$$

5. Consider the linear system $A x=b$ with

$$
A=\left(\begin{array}{cccc}
10 & 1 & -2 & 0 \\
0 & 10 & -1 & 3 \\
0 & -2 & 8 & -1 \\
0 & 3 & -1 & 5
\end{array}\right), b=\left(\begin{array}{c}
6 \\
25 \\
1 \\
0
\end{array}\right) .
$$

Write out four equations by the Gauss-Seidel (GS) method to obtain the new iterate $x^{(n+1)}$ from the current iterate $x^{(n)}$. Carry out 2 iterations starting from $x^{(0)}=(0,0,0,0)^{T}$. (Keep 2 decimal places in calculations.)

THE UNIVERSITY
of LIVERPOOL
6.
(i) Using the composite Trapezium rule (with 2 equal subintervals) approximate

$$
\int_{0}^{1} e^{x y-1} u(y) d y
$$

(ii) Using this approximation for the integral, set up the linear system to find the numerical solution of the following equation

$$
2 u(x)-\int_{0}^{1} e^{x y-1} u(y) d y=x-1, \quad x \in[0,1] .
$$

Do not solve the system.

THE UNIVERSITY
 of LIVERPOOL

SECTION B

7. Consider the matrix A :

$$
A=\left(\begin{array}{cccc}
2 & 3 & 0 & 0 \\
1 & 2 & 0 & -1 \\
4 & 8 & -1 & 0 \\
0 & 2 & 1 & -3
\end{array}\right) .
$$

Using exact arithmetic (i.e. fractions), compute the $P A=L U$ decomposition of matrix A with partial pivoting.
8. Consider the matrix A :

$$
A=\left(\begin{array}{ccc}
-5 & 2 & -1 \\
0 & -1 & 0 \\
-1 & 3 & 7
\end{array}\right)
$$

(i) Given the result

$$
(A+5 I)^{-1}=\left(\begin{array}{ccc}
-12 & 6.75 & -1 \\
0 & 0.25 & 0 \\
-1 & 0.5 & 0
\end{array}\right)
$$

use the shifted inverse power method for 2 steps to compute the eigenvalue of A near $\gamma=-5$ and its corresponding eigenvector. Start from $z=$ $[1,0,0]^{T}$ and keep at least 4 decimal digits in calculations.
(ii) Use the Gerschgorin theorem to locate the other two eigenvalues.

THE UNIVERSITY

of LIVERPOOL
9.
(i) State both the explicit and implicit Euler methods for the following general initial value problem:

$$
\frac{d x}{d t}=f(t, x(t)), \quad x(0)=x_{0} .
$$

(ii) Use the explicit Euler method to solve the initial value problem

$$
\frac{d x}{d t}=3 x(1-0.1 x), \quad x(0)=1
$$

to obtain $x(0.2)$ with the step length $h=0.1$. (Keep at least 4 decimal places in calculations.) Compare your result with the exact solution:

$$
x(t)=\frac{10 e^{3 t}}{10+\left(e^{3 t}-1\right)} .
$$

Suggest how you could improve the accuracy of the numerical estimate.
(iii) Use the implicit Euler method to obtain $x(0.1)$ with the step length $h=0.1$ for the same initial value problem.
(iv) Comment on the advantages and disadvantages of the implicit and explicit Euler schemes.

THE UNIVERSITY
 of LIVERPOOL

10. Consider the solution of the following boundary value problem, by the usual finite difference method with 3×3 boxes, i.e. 4 interior and uniformly distributed mesh points:

$$
(1+2 y) \frac{\partial^{2} u}{\partial x^{2}}+(1+x) \frac{\partial^{2} u}{\partial y^{2}}=(x+y+1)^{2}, \quad p=(x, y) \in \Omega
$$

where the domain is the square $\Omega=[0,0.3] \times[-0.1,0.2] \in R^{2}$, with the Dirichlet boundary condition $u=2 y$ given.
(i) Sketch the computational domain and compute the boundary values.
[5 marks]
(ii) Set up the linear system for the four interior unknowns (without having to solve it). Keep at least 4 decimal places throughout your calculations.
[10 marks]
11. Given that $A x=b$, where

$$
A=\left(\begin{array}{ccc}
4 & 1 & 2 \\
2 & -5 & 1 \\
0 & 1 & 6
\end{array}\right), \quad b=\left(\begin{array}{c}
1 \\
5 \\
12
\end{array}\right)
$$

Using exact arithmetic (i.e. fractions):
(i) Write down the 3 equations for the 3 components of the vector $x^{(n+1)}$ for the Jacobi iteration method and carry out 2 iterations starting from $x^{(0)}=$ $(0,0,0)^{T}$. Find the iteration matrix T_{J} and the vector c_{J} such that

$$
x^{(n+1)}=T_{J} x^{(n)}+c_{J} .
$$

[7 marks]
(ii) Find $(L+D)^{-1}$, where L and D are the lower diagonal and the diagonal parts of A respectively. Hence compute the iteration matrix $T_{G S}$ of the Gauss-Seidel iteration method.
[7 marks]
(iii) What necessary and sufficient conditions can you use to check whether each of the Jacobi and Gauss-Seidel iteration methods converge or not?

