THE UNIVERSITY
of LIVERPOOL

Math 266

May 2004 Exam

Numerical Analysis: Solution of Linear Systems

Year 2 Paper

Full marks will be awarded for complete answers to NINE questions, of which

- SIX answers must be from Section A and
- THREE from Section B
(only the best 3 answers from Section B will be taken into account).

THE UNIVERSITY
of LIVERPOOL

SECTION A
 (ATTEMPT ALL QUESTIONS)

1.

[10 marks]
For the following real-valued function

$$
f(x)=\ln \left(\frac{1-x}{1+x}\right)+2,
$$

i) compute $f^{\prime}(x)$ and verify that $f^{\prime}(x)<0$ in $(-1,1)$. How many roots can $f(x)$ have in $(-1,1)$?
ii) use 2 steps of the Newton-Raphson method to find an approximate solution to $f(x)=0$, starting from $x^{(0)}=0.5$.
(Keep at least 4 decimal digits in calculations.)

2.

Starting from $x^{(0)}=0.5$ and $x^{(1)}=0.6$, solve the nonlinear equation

$$
\ln \left(\frac{1-x}{1+x}\right)+2=0
$$

using 2 steps of the Secant method. (Keep at least 4 decimal digits in calculations.)

3.

For the following three simultaneous nonlinear equations in x_{1}, x_{2}, x_{3}

$$
\left\{\begin{aligned}
\sin \left(x_{1}+x_{2}\right)-x_{1} x_{2} & =0, \\
x_{1}^{2}+x_{2}^{2}-1 & =0, \\
5 x_{1}^{2}+21 x_{2}^{2}-9 x_{3} & =0,
\end{aligned}\right.
$$

i) work out the general Jacobian matrix J;
ii) set up the general formula for using the Newton-Raphson method with some initial guess $\mathbf{x}^{(0)}$; (Do not invert any matrices.)
iii) at the point $\mathbf{x}^{(0)}=\left[\begin{array}{lll}0 & -1 & 2\end{array}\right]^{T}$, compute the Jacobian matrix J and carry out one step of the Newton-Raphson method. (Keep at least 4 decimal digits in calculations.)

4.

[13 marks]
For the following linear system

$$
\left(\begin{array}{lll}
2 & 4 & 2 \\
1 & 0 & 3 \\
3 & 1 & 2
\end{array}\right) \mathbf{x}=\left(\begin{array}{c}
-4 \\
4 \\
3
\end{array}\right),
$$

i) solve it by Gaussian elimination.
ii) explain how the multipliers and coefficients would give rise to the LU decomposition.
iii) using i) and ii), find the remaining entries L_{32}, D_{22}, M_{13} in the $A=L D M$ decomposition:

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0.5 & 1 & 0 \\
1.5 & L_{32} & 1
\end{array}\right), D=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & D_{22} & 0 \\
0 & 0 & -6
\end{array}\right) \text { and } M=\left(\begin{array}{ccc}
1 & 2 & M_{13} \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right) .
$$

iv) In the first stage of a Gaussian elimination method with partial pivoting for the above system, what permutation P_{1} is appropriate?
5.
[11 marks]
(a) Compute $\|A\|_{\infty}$ and $\|b\|_{2}$ for $A=\left(\begin{array}{cc}-1 & 5 \\ 1 & -1\end{array}\right), b=\left[\begin{array}{lll}3 & 0 & 4\end{array}\right]^{T}$.
(b) Compute M^{-1} for $M=\left(\begin{array}{ccc}1 & 3 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)$ and verify that the 1-norm condition number of M is $\kappa_{1}(M)=\operatorname{cond}_{1}(M)=24$.

6.

For the following matrix A

$$
\left[\begin{array}{rrr}
9 & 0 & 1 \\
0 & 1 & 0 \\
1 & -14 & 8
\end{array}\right]
$$

use the Gerschgorin theorem to decide which of the following three values

$$
-50, \quad 1.2, \quad 50
$$

is closest to an eigenvalue of A.

THE UNIVERSITY
of LIVERPOOL

SECTION B

7.

[15 marks]
Given that $A \mathbf{x}=\mathbf{b}$,

$$
A=\left(\begin{array}{ccc}
9 & 2 & 0 \\
2 & 8 & -3 \\
0 & -3 & 7
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{c}
13 \\
15 \\
1
\end{array}\right)
$$

i) write out the three equations for the three components of the vector x^{n+1} for the Jacobi Iteration Method and carry out 2 iterations starting from $\mathbf{x}^{0}=\mathbf{0}$. Find the iteration matrix T_{J} and vector \mathbf{c}_{J} such that

$$
\mathbf{x}^{n+1}=T_{J} \mathbf{x}^{n}+\mathbf{c}_{J} .
$$

[6 marks]
ii) write out the three equations for \mathbf{x}^{n+1} for the Gauss-Seidel (GS) Method and carry out 2 iterations starting from $\mathbf{x}^{0}=\mathbf{0}$. Find $(L+D)^{-1}$ (where L, D are respectively the lower triangular, diagonal parts of A) and hence the iteration matrix $T_{G S}$ and vector $\mathbf{c}_{G S}$ such that

$$
\mathbf{x}^{n+1}=T_{G S} \mathbf{x}^{n}+\mathbf{c}_{G S} .
$$

[8 marks]
iii) what necessary and sufficient condition can you use check whether each of the Jacobi and Gauss-Seidel Iteration Methods converges or not?
[1 mark]

THE UNIVERSITY
of LIVERPOOL
8.

For the following matrix A

$$
\left[\begin{array}{rrr}
9 & 0 & 1 \\
0 & 1 & 0 \\
1 & -14 & 8
\end{array}\right],
$$

given the result

$$
(A-6 I)^{-1}=\left[\begin{array}{rrr}
3 & 0 & 1 \\
0 & -5 & 0 \\
1 & -14 & 2
\end{array}\right]^{-1}=\left[\begin{array}{rrr}
0.4 & 0.56 & -0.2 \\
0 & -0.2 & 0 \\
-0.2 & -1.68 & 0.6
\end{array}\right]
$$

use the shifted inverse power method for two steps to estimate the eigenvalue near $\gamma=6$ and its eigenvector. Start from $\mathbf{x}^{(0)}=\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right]^{T}$ and keep at least 4 decimal digits in calculations.
9.

Consider the solution of the following boundary value problem, by the usual finite difference method with $(N+1) \times(M+1)=3 \times 3$ boxes i.e. 4 interior and uniformly distributed mesh points:

$$
-\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=x-y^{2}, \quad p=(x, y) \in \Omega
$$

where the domain is the square $\Omega=[0,0.3] \times[0,0.3] \in R^{2}$, with the Dirichlet boundary condition $\left.u\right|_{\Gamma}=x+y$ given.
i) Sketch the computational domain and show that the boundary conditions are effectively translated to boundary values of $0.1,0.2$ at the bottom and left sides, and of $0.4,0.5$ at the top and right sides.
ii) Set up the linear system for the four interior unknowns (without having to solve it).

THE UNIVERSITY
of LIVERPOOL
10.
(a) Compute the Lagrange interpolating polynomial $y=P_{3}(x)$ of degree 3 that passes through these 4 points $\left(x_{j}, y_{j}\right)$:
[5 marks]

$$
(0, \sqrt{17}), \quad(2, \sqrt{5}), \quad(4,1), \quad(6, \sqrt{5}) .
$$

(b) The three point quadrature formula can be written as

$$
\int_{-1}^{1} f(x) d x=w_{0} f\left(x_{0}\right)+w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)
$$

where $x_{0}=-\sqrt{15} / 5, \quad x_{1}=0, \quad x_{2}=\sqrt{15} / 5$.

Find the suitable weights w_{j} (in exact arithmetic) so that the rule becomes a Gauss type i.e. the rule is exact for degree $0,1,2$ polynomials. [6 marks]

Adapt the above rule designed for $[-1,1]$ to approximate (keeping at least 4 decimal digits in calculations)

$$
I=\int_{0}^{1} \frac{10 x^{4}}{\sqrt{100 x^{5}+1}} d x
$$

and compute the absolute error of the approximation to the true value:

$$
I=\frac{\sqrt{101}-1}{25}
$$

[4 marks]

THE UNIVERSITY
of LIVERPOOL
11.
(a) State both the explicit and implicit Euler methods for solving
[2 marks]

$$
\frac{d y}{d x}=f(x, y), \quad x \geq x_{0}, \quad y\left(x_{0}\right)=y_{0}
$$

Use the explicit Euler method to solve the initial value problem
[5 marks]

$$
\frac{d y}{d x}=e^{-x} y-2 y+x, \quad y(0)=1
$$

to obtain $y(0.5)$ with the step length $h=0.25$.
(b) Combine the nonlinear Newton-Raphson method with the implicit Euler method to solve

$$
\frac{d y}{d x}=e^{-x} y-2 y^{2}+x, \quad y(0)=1
$$

for $y(0.5)$ with the step length $h=0.25$.
(Use no more than 3 iterations in each Newton-Raphson step.)

