1. (a) Let X be binomially distributed with parameters (n, p). By representing X as a sum of independent Bernoulli random variables, derive expressions for $E[X]$ and $\operatorname{Var}[X]$.
(b) Suppose $Y_{1}, Y_{2}, Y_{3}, \ldots$ are independent Bernoulli random variables with respective success probabilities $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ That is, for $i=1,2, \ldots$ the probability mass function of Y_{i} is given by

$$
\begin{aligned}
& P\left(Y_{i}=0\right)=1-\left(\frac{1}{2}\right)^{i} \\
& P\left(Y_{i}=1\right)=\left(\frac{1}{2}\right)^{i}
\end{aligned}
$$

Find $E\left[Y_{i}\right]$ and $\operatorname{Var}\left[Y_{i}\right]$.
(c) For $n=1,2, \ldots$ define $S_{n}=Y_{1}+\cdots+Y_{n}$, where Y_{1}, Y_{2}, \ldots are as in part (b) above.
(i) For $n=3$, show that the probability mass function of S_{3} is given by

$$
\begin{aligned}
& P\left(S_{3}=0\right)=21 / 64, \\
& P\left(S_{3}=1\right)=31 / 64, \\
& P\left(S_{3}=2\right)=11 / 64, \\
& P\left(S_{3}=3\right)=1 / 64 .
\end{aligned}
$$

(ii) Find $E\left[S_{n}\right]$ and $\operatorname{Var}\left[S_{n}\right]$.
[You may use without proof the result that

$$
\sum_{i=0}^{n} x^{i}=\frac{1-x^{n+1}}{1-x}
$$

[6 marks]
(iii) Defining the sample mean $\bar{Y}_{n}=S_{n} / n$, show that $\lim _{n \rightarrow \infty} E\left[\bar{Y}_{n}\right]=0$. Comment on why this result is intuitively reasonable.
[2 marks]
2. (a) Suppose the random variable T is exponentially distributed with parameter λ, so that T has distribution function

$$
F_{T}(t)= \begin{cases}0 & t<0 \\ 1-\mathrm{e}^{-\lambda t} & t \geq 0\end{cases}
$$

Define the memoryless property, explain the intuitive meaning of this property, and show that the distribution of T has the memoryless property.
[4 marks]
(b) The random variable X is said to follow the Weibull distribution with parameters $\beta>0, \theta>0$ if the distribution function of X is given by

$$
F_{X}(x)= \begin{cases}0 & x<0 \\ 1-\exp \left\{-\left(\frac{x}{\theta}\right)^{\beta}\right\} & x \geq 0\end{cases}
$$

Derive an expression for the probability density function $f_{X}(x)$ of X. [3 marks] Suppose the random variable X follows the Weibull distribution with parameters β, θ. For $a, b>0$ find an expression for $P(X>a+b \mid X>a)$. [4 marks] By considering the ratio

$$
\frac{P(X>a+b \mid X>a)}{P(X>b)}
$$

show that in the case $\beta=2$, the distribution of X does not possess the memoryless property.
For which values of the parameters β, θ, if any, does the Weibull distribution possess the memoryless property?
[1 mark]
(c) Suppose that the lifetime Y (in years) of a particular electrical component follows the Weibull distribution with parameters $\beta=2, \theta=1$. Treating b as a fixed constant, sketch a graph of the function $g(a)$ defined by

$$
g(a)=P(Y>a+b \mid Y>a)
$$

Give your intepretation of the shape of the graph of $g(a)$.
3. (a) Suppose that X is a continuous random variable with probability density function $f_{X}(x)$, and that the random variable Y is defined by $Y=g(X)$ for some strictly monotonic function $g(x)$. Show that the probability density function of Y is given by

$$
\begin{equation*}
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right| \tag{5marks}
\end{equation*}
$$

(b) Suppose X is a continuous random variable with density

$$
f(x)= \begin{cases}x^{3} / 4 & 0<x<2 \\ 0 & \text { otherwise }\end{cases}
$$

(i) Find the cumulative distribution function $F(x)$ of X.
(ii) Find the cumulative distribution function and the probability density function of the random variable Y defined by $Y=\sqrt{X / 2}$. What is the range of Y ?
[8 marks]
Find an expression for $E\left[Y^{n}\right]$ where $n=0,1,2, \ldots$ Hence write down the values of $E[Y]$ and $\operatorname{Var}[Y]$.
[4 marks]
4. Suppose that X, Y are continuous random variables with joint density function

$$
f_{X, Y}(x, y)=\frac{\mathrm{e}^{-y}}{2 y}, \quad y>0, \quad-y<x<y
$$

(a) Draw the region of non-zero density.
(b) Find the marginal density $f_{Y}(y)$ of Y and the conditional density $f_{X \mid Y}(x \mid y)$ of X given $Y=y$ for $y>0$.
For each of these two distributions, give the standard name of the distribution, specifying any parameter values.
(c) Find $E[X]$ and $E[Y]$.
(d) Find $E[X Y]$ and hence find the covariance $\operatorname{Cov}[X, Y]$.
(e) Are X and Y independent? Explain your answer.
5. Suppose that X, Y are continuous random variables with joint density function

$$
f_{X, Y}(x, y)= \begin{cases}(2 / \pi) \exp \left\{-\left(x^{2}+y^{2}\right) / 2\right\} & \text { for } x, y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Define the random variables U, V by

$$
U=2 X+Y, \quad V=3 X / Y .
$$

(a) Show that the Jacobian, J, is given by

$$
J=\frac{\partial(x, y)}{\partial(u, v)}=\frac{-3 u}{(2 v+3)^{2}} .
$$

(b) Find the joint density $f_{U, V}(u, v)$.
(c) Find the marginal density of V.

For part (c) you may use without proof the result that for $A>0$,

$$
\int_{0}^{\infty} u \mathrm{e}^{-A u^{2}} d u=\frac{1}{2 A} .
$$

6. (a) For any random variable X the moment generating function $M_{X}(t)$ is defined by $M_{X}(t)=E\left[\mathrm{e}^{t X}\right]$.
Show that (i) $E[X]=M_{X}^{\prime}(0)$ and (ii) $\operatorname{Var}[X]=M_{X}^{\prime \prime}(0)-\left(M_{X}^{\prime}(0)\right)^{2}$, where $M_{X}^{\prime}(t)$ and $M_{X}^{\prime \prime}(t)$ denote the first and second derivatives, respectively, of $M_{X}(t)$ with respect to t.
Write down an expression for $E\left[X^{n}\right]$, where $n=1,2, \ldots$, in terms of derivatives of the moment generating function $M_{X}(t)$.
[1 mark]
Defining the random variable Y to be $Y=a+b X$, where a, b are non-random, show that the moment generating function of Y is given by

$$
M_{Y}(t)=\mathrm{e}^{a t} M_{X}(b t)
$$

[2 marks]
(b) Suppose Z follows the standard normal distribution, $Z \sim N(0,1)$, so that Z has probability density function

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-z^{2} / 2} \quad-\infty<z<\infty
$$

Show that the moment generating function of Z is given by $M_{Z}(t)=\mathrm{e}^{t^{2} / 2}$.
[8 marks]
Hence derive an expression for the moment generating function $M_{X}(t)$ of the normal random variable X with mean μ and variance σ^{2} given by $X=\mu+\sigma Z$, and show that the cumulant generating function $K_{X}(t)=\ln \left(M_{X}(t)\right)$ of X is given by

$$
K_{X}(t)=\mu t+\left(\sigma^{2} / 2\right) t^{2}
$$

[3 marks]
Based on this expression for $K_{X}(t)$, what can be said about the first, second, and higher cumulants of the $N\left(\mu, \sigma^{2}\right)$ distribution? To what extent do these statements generalise to distributions other than the normal distribution?
[3 marks]
7. (a) Give a careful statement of the Central Limit Theorem.

When using the Central Limit Theorem to approximate the distribution of the sample mean \bar{X}, what factors affect the accuracy of the approximation in practice?
(b) Suppose $V_{1}, V_{2}, \ldots, V_{n}$ are independent, identically distributed random variables, each being uniformly distributed on the interval $[0,1]$, and define $\bar{V}=$ $\left(V_{1}+\cdots+V_{n}\right) / n$.
(i) Show that $E[\bar{V}]=1 / 2$ and $\operatorname{Var}[\bar{V}]=\frac{1}{12 n}$.
[3 marks]
(ii) For the case $n=12$, use the Central Limit Theorem to approximate $P(\bar{V}<0.6)$.
(iii) Comment on whether you would expect the Central Limit Theorem to provide a good approximation for the probabiilty computed in part (ii). In your answer you should consider the range of \bar{V}, as well as any factors mentioned in your answer to part (a) above.
(iv) Use the Central Limit Theorem to find (approximately) the smallest n for which $P(\bar{V}<0.6)>0.975$.

