
MATH264, Summer 2005. Solutions

1. [Similar to the example discussed in class.]

(a) Introduce a random variable X which represents the number of wrong connec-
tions in a day. Then X has a binomial distribution with parameters n = 2000 and
p = 0.001. The required probability is(

n

0

)
p0(1− p)n +

(
n

1

)
p1(1− p)n−1 +

(
n

2

)
p2(1− p)n−2

= (.999)2000 + 2000 · .001 · (.999)1999 +
2000 · 1999

2
(.001)2(.999)1998 = 0.676676.

(b) We use the Poisson approximation with λ = np = 2. We have

P (X ≤ 2) = P (X = 0) + P (X = 1) + P (X = 2)

e−λ
[
1 + λ + λ2/2

]
= e−2[1 + 2 + 2] = 0.676676.

The Poisson approximation is very good; the first six decimal places coincide!

(c) Let now X represent the number of wrong connections in a day when the number
of independent calls is n. We require to choose n such that

P (X ≥ 1) ≥ 0.9

or equivalently
P (X = 0) ≤ 0.1.

If n is large we can approximate P (X = 0) by exp(−pn) = exp(−0.001n). Therefore
we require the minimum n which satisfies

exp(−0.001n) ≤ 0.1,

or, equivalently,
exp(0.001n) ≥ 10.

Taking the logarithms of both sides, we obtain

n ≥ (ln 10)/0.001 = 2302.6

Thus the minimum number of independent calls required is 2303.

2. [Not seen but based on standard material.]

(a) First Pacific Inc. will pay compensation higher than $3 million if and only if
X = 5 or X = 4. Therefore the required probability is

P (X = 5) + P (X = 4) = P (T < 1) + P (1 ≤ T < 2)

= (1− exp(−0.5×1)+(exp(−0.5×1)− exp(−0.5×2)) = 1− exp(−0.5×2) ≈ 0.63.
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(b) To find the expected compensation we use the definition of the expected value:

EX =
∑

i

xiP (X = xi) = 5P (X = 5) + 4P (X = 4) + 2P (X = 2) + 0P (X = 0).

Observe that

P (X = 5) = P (T < 1) = 1− exp(−0.5 ∗ 1) = 0.393

P (X = 4) = P (1 ≤ T < 2) = exp(−0.5 ∗ 1)− exp(−0.5 ∗ 2) = 0.239

P (X = 2) = P (2 ≤ T < 3) = exp(−0.5 ∗ 2)− exp(−0.5 ∗ 3) = 0.145

(P (X = 0) is not needed.) Therefore

EX = 5 ∗ 0.393 + 4 ∗ 0.239 + 2 ∗ 0.145 = 3.211.

(c) Let Y = f(X) be the amount of compensation First Pacific Inc. itself has to
pay. The random variable Y has the following probability mass function:

Y probab.
3 P (X = 5) + P (X = 4) = 0.632
2 P (X = 2) = 0.145
0 P (X = 0) (not needed)

Therefore
EY = 3 ∗ 0.632 + 2 ∗ 0.145 = 2.186.

3. [Standard, similar problems were discussed in class.]

(a) According to the definition of a uniform distribution,

fX(x) =

{
1
4
, if x ∈ [0, 4];

0 otherwise .

(b) The range of X is [0, 4]. Hence, the range of Y =
√

X is [0, 2].

(c) First of all, the cumulative distribution function of X is

FX(x) =
∫ x

−∞
fX(u)du =


0, if x < 0;
x/4, if 0 ≤ x ≤ 4;
1, if x > 4.

Clearly, FY (y) = 0, if y < 0 and FY (y) = 1, if y > 2. Now for 0 ≤ y ≤ 2, we have

FY (y) = P (Y ≤ y) = P (X ≤ y2) = FX(y2) = y2/4.

(d) Now, the density function is

fY (y) =
dFY (y)

dy
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=

{
y
2
, if y ∈ [0, 2];

0 otherwise .

(e) According to the definition,

E[Y ] =
∫ ∞

−∞
yfY (y)dy =

∫ 2

0

y2

2
dy =

23

6
= 4/3.

4. [Similar to homework.]
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(b) Marginal density of X:

fX(x) =
∫ x

0
2(x + y)dy = 2[xy + 0.5× y2]x0 = 2× 1.5× x2 = 3x2, 0 ≤ x ≤ 1.

Marginal density of Y :

fY (y) =
∫ 1

y
2(x + y)dx = 2[0.5× x2 + xy]1y = 2[0.5 + y − 0.5× y2 − y2]

= 1 + 2y − 3y2, 0 ≤ y ≤ 1.

(c)

fY |X(y|x) =
2(x + y)

3x2
, 0 ≤ y ≤ x ≤ 1.

(d)

fY |X(y|1) =
2(1 + y)

3
, 0 ≤ y ≤ 1.

So,

P (Y > 1/3|X = 1) =
2

3

∫ 1

1/3
(1+y)dy =

2

3
[y+0.5×y2]11/3 =

2

3
[1+1/2−1/3−1/18] =

20

27
.
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5. [Similar to homework.]

We must find the inverse transformation.

v = ln(y + 1); ev = y + 1; y = ev − 1; x = u− y = u− ev + 1.

Thus, {
x = u− ev + 1;
y = ev − 1,

where u− ev + 1 ≥ 0 and ev − 1 ≥ 0, that is v ≥ 0 and u ≥ ev − 1.

The Jacobian of this transformation is

J = det


∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

 = det

[
1 −ev

0 ev

]
= ev.

Thus,

fU,V (u, v) = f(u− ev + 1, ev − 1)ev = (u− ev + 1)e−(u−ev+1)ev

ev

= ev(u− ev + 1) exp{−ev(u− ev + 1)},

where v ≥ 0, u ≥ ev − 1.

6. [Similar to homework.]

(a) (i)
µ = E[Xi] = 0.5× (−2) + 0.1× 1 = −0.9;

E[X2
i ] = 0.5×4+0.1×1 = 2.1; σ2 = V ar[Xi] = 2.1− (0.9)2 = 1.29, so σ = 1.136.

Let S =
∑100

i=1 Xi. Then

P (S ≤ −70) = P

(
S − nµ

σ
√

n
≤ −70− 100× (−0.9)

10× 1.136

)
≈ P (Z ≤ 1.76) ≈ 0.9608.

(Here Z has standard normal distribution.)

(ii) Denote Yi = X2
i . The PMF of Yi is P (Yi = 4) = 0.5; P (Yi = 0) = 0.4;

P (Yi = 1) = 0.1.
µ = E[Yi] = 0.5× 4 + 0.1× 1 = 2.1

E[Y 2
i ] = 0.5×16+0.1×1 = 8.1; σ2 = V ar[Yi] = 8.1−(2.1)2 = 3.69, so σ = 1.921.

Let S =
∑100

i=1 X2
i =

∑100
i=1 Yi. Then

P (S ≥ 200) = P

(
S − nµ

σ
√

n
≥ 200− 100× (2.1)

10× 1.921

)

≈ P (Z ≥ −0.521) = P (Z ≤ +0.521) ≈ 0.6985.

(Here Z has standard normal distribution.)
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(b) Set Sn =
∑n

i=1 X2
i

0.99 = P (Sn ≥ 200) ≈ P

(
Z ≥ 200− 2.1n

1.921
√

n

)
= P

(
Z ≤ 2.1n− 200

1.921
√

n

)
.

The 99% critical value is 2.33, so we must solve for n

2.1n− 200 = 2.33× 1.921
√

n.

Set n = x2. The equation above becomes

2.1x2 − 4.476x− 200 = 0.

So,

x =
4.476 +

√
4.4762 + 800× 2.1

2× 2.1
= 10.88.

(The other root is negative.) Hence, n = 119 is the smallest integer ≥ x2.

7. [Similar to homework.]

(a) u = g(x) =
√

x
n
, so x = g−1(u) = nu2 and dx

du
= 2nu. Thus,

fU(u) = fX(g−1(u))
d

du
[g−1(u)] =

1

2n/2Γ(n/2)
(nu2)n/2−1e−nu2/22nu

=
1

2n/2−1Γ(n/2)
nn/2(u2)

n−1
2 e−nu2/2.

(b)

f(t) =
∫ ∞

−∞
|u|fU(u)fY (ut)du (since fU(u) = 0 if u < 0)

=
∫ ∞

0
ufU(u)fY (ut)du =

∫ ∞

0

1

2n/2−1Γ(n/2)
nn/2(u2)n/2e−nu2/2 1√

2π
e−u2t2/2du

=
nn/2

2n/2−1Γ(n/2)
√

2π

∫ ∞

0
(u2)n/2e−(n+t2)u2/2du

(Set u2 = x; 2udu = dx; du = dx
2
√

x
= 1

2
x−1/2dx.)

=
nn/2

2
n−1

2
√

πΓ(n/2)

∫ ∞

0
xn/2e−

(n+t2)x
2

1

2
x−1/2dx

=
nn/2

2
n+1

2
√

πΓ(n/2)

∫ ∞

0
x(n+1

2
)−1e−

(n+t2)x
2 dx

(We have obtained the Gamma integral with α = n+1
2

and λ = 1
2
(n + t2).)

=
nn/2

2
n+1

2
√

πΓ(n/2)

Γ
(

n+1
2

)
[

1
2
(n + t2)

]n+1
2

=
n−1/2nn/2+1/2Γ

(
n+1

2

)
2n/2+1/2

(
1
2

)n/2+1/2
(n + t2)n/2+1/2

√
πΓ

(
n
2

)

=
1√
nπ

Γ
(

n+1
2

)
Γ
(

n
2

) (
1 +

t2

n

)−(n+1
2 )

.
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