MATH264, Summer 2005. Solutions

1. [Similar to the example discussed in class.]

(a) Introduce a random variable X which represents the number of wrong connections in a day. Then X has a binomial distribution with parameters $n=2000$ and $p=0.001$. The required probability is

$$
\begin{gathered}
\binom{n}{0} p^{0}(1-p)^{n}+\binom{n}{1} p^{1}(1-p)^{n-1}+\binom{n}{2} p^{2}(1-p)^{n-2} \\
=(.999)^{2000}+2000 \cdot .001 \cdot(.999)^{1999}+\frac{2000 \cdot 1999}{2}(.001)^{2}(.999)^{1998}=\mathbf{0 . 6 7 6 6 7 6}
\end{gathered}
$$

(b) We use the Poisson approximation with $\lambda=n p=2$. We have

$$
\begin{aligned}
& P(X \leq 2)=P(X=0)+P(X=1)+P(X=2) \\
& e^{-\lambda}\left[1+\lambda+\lambda^{2} / 2\right]=e^{-2}[1+2+2]=\mathbf{0 . 6 7 6 6 7 6}
\end{aligned}
$$

The Poisson approximation is very good; the first six decimal places coincide!
(c) Let now X represent the number of wrong connections in a day when the number of independent calls is n. We require to choose n such that

$$
P(X \geq 1) \geq 0.9
$$

or equivalently

$$
P(X=0) \leq 0.1 .
$$

If n is large we can approximate $P(X=0)$ by $\exp (-p n)=\exp (-0.001 n)$. Therefore we require the minimum n which satisfies

$$
\exp (-0.001 n) \leq 0.1
$$

or, equivalently,

$$
\exp (0.001 n) \geq 10
$$

Taking the logarithms of both sides, we obtain

$$
n \geq(\ln 10) / 0.001=2302.6
$$

Thus the minimum number of independent calls required is 2303.

2. [Not seen but based on standard material.]

(a) First Pacific Inc. will pay compensation higher than $\$ 3$ million if and only if $X=5$ or $X=4$. Therefore the required probability is

$$
\begin{gathered}
P(X=5)+P(X=4)=P(T<1)+P(1 \leq T<2) \\
=(1-\exp (-0.5 \times 1)+(\exp (-0.5 \times 1)-\exp (-0.5 \times 2))=1-\exp (-0.5 \times 2) \approx \mathbf{0 . 6 3 .}
\end{gathered}
$$

(b) To find the expected compensation we use the definition of the expected value:

$$
E X=\sum_{i} x_{i} P\left(X=x_{i}\right)=5 P(X=5)+4 P(X=4)+2 P(X=2)+0 P(X=0)
$$

Observe that

$$
\begin{aligned}
& P(X=5)=P(T<1)=1-\exp (-0.5 * 1)=0.393 \\
& P(X=4)=P(1 \leq T<2)=\exp (-0.5 * 1)-\exp (-0.5 * 2)=0.239 \\
& P(X=2)=P(2 \leq T<3)=\exp (-0.5 * 2)-\exp (-0.5 * 3)=0.145
\end{aligned}
$$

($P(X=0)$ is not needed.) Therefore

$$
E X=5 * 0.393+4 * 0.239+2 * 0.145=\mathbf{3 . 2 1 1}
$$

(c) Let $Y=f(X)$ be the amount of compensation First Pacific Inc. itself has to pay. The random variable Y has the following probability mass function:

Y	probab.
3	$P(X=5)+P(X=4)=0.632$

$2 \quad P(X=2)=0.145$
$0 \quad P(X=0) \quad$ (not needed)
Therefore

$$
E Y=3 * 0.632+2 * 0.145=\mathbf{2 . 1 8 6}
$$

3. [Standard, similar problems were discussed in class.]

(a) According to the definition of a uniform distribution,

$$
f_{X}(x)= \begin{cases}\frac{1}{4}, & \text { if } x \in[0,4] ; \\ 0 & \text { otherwise }\end{cases}
$$

(b) The range of X is $[0,4]$. Hence, the range of $Y=\sqrt{X}$ is $[0,2]$.
(c) First of all, the cumulative distribution function of X is

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) d u= \begin{cases}0, & \text { if } x<0 \\ x / 4, & \text { if } 0 \leq x \leq 4 \\ 1, & \text { if } x>4\end{cases}
$$

Clearly, $F_{Y}(y)=0$, if $y<0$ and $F_{Y}(y)=1$, if $y>2$. Now for $0 \leq y \leq 2$, we have

$$
F_{Y}(y)=P(Y \leq y)=P\left(X \leq y^{2}\right)=F_{X}\left(y^{2}\right)=y^{2} / 4
$$

(d) Now, the density function is

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}
$$

$$
= \begin{cases}\frac{y}{2}, & \text { if } y \in[0,2] ; \\ 0 & \text { otherwise } .\end{cases}
$$

(e) According to the definition,

$$
E[Y]=\int_{-\infty}^{\infty} y f_{Y}(y) d y=\int_{0}^{2} \frac{y^{2}}{2} d y=\frac{2^{3}}{6}=4 / 3
$$

4. [Similar to homework.]

(a)

(b) Marginal density of X :

$$
f_{X}(x)=\int_{0}^{x} 2(x+y) d y=2\left[x y+0.5 \times y^{2}\right]_{0}^{x}=2 \times 1.5 \times x^{2}=3 x^{2}, \quad 0 \leq x \leq 1
$$

Marginal density of Y :

$$
\begin{gathered}
f_{Y}(y)=\int_{y}^{1} 2(x+y) d x=2\left[0.5 \times x^{2}+x y\right]_{y}^{1}=2\left[0.5+y-0.5 \times y^{2}-y^{2}\right] \\
=1+2 y-3 y^{2}, \quad 0 \leq y \leq 1
\end{gathered}
$$

(c)

$$
f_{Y \mid X}(y \mid x)=\frac{2(x+y)}{3 x^{2}}, \quad 0 \leq y \leq x \leq 1
$$

(d)

$$
f_{Y \mid X}(y \mid 1)=\frac{2(1+y)}{3}, \quad 0 \leq y \leq 1
$$

So,
$P(Y>1 / 3 \mid X=1)=\frac{2}{3} \int_{1 / 3}^{1}(1+y) d y=\frac{2}{3}\left[y+0.5 \times y^{2}\right]_{1 / 3}^{1}=\frac{2}{3}[1+1 / 2-1 / 3-1 / 18]=\frac{20}{27}$.

5. [Similar to homework.]

We must find the inverse transformation.

$$
v=\ln (y+1) ; \quad e^{v}=y+1 ; \quad y=e^{v}-1 ; \quad x=u-y=u-e^{v}+1 .
$$

Thus,

$$
\left\{\begin{array}{l}
x=u-e^{v}+1 ; \\
y=e^{v}-1,
\end{array}\right.
$$

where $u-e^{v}+1 \geq 0$ and $e^{v}-1 \geq 0$, that is $v \geq 0$ and $u \geq e^{v}-1$.
The Jacobian of this transformation is

$$
J=\operatorname{det}\left[\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
1 & -e^{v} \\
0 & e^{v}
\end{array}\right]=e^{v} .
$$

Thus,

$$
\begin{aligned}
f_{U, V}(u, v)= & f\left(u-e^{v}+1, e^{v}-1\right) e^{v}=\left(u-e^{v}+1\right) e^{-\left(u-e^{v}+1\right) e^{v}} e^{v} \\
= & e^{v}\left(u-e^{v}+1\right) \exp \left\{-e^{v}\left(u-e^{v}+1\right)\right\},
\end{aligned}
$$

where $v \geq 0, u \geq e^{v}-1$.

6. [Similar to homework.]

(a) (i)

$$
\mu=E\left[X_{i}\right]=0.5 \times(-2)+0.1 \times 1=-0.9 ;
$$

$E\left[X_{i}^{2}\right]=0.5 \times 4+0.1 \times 1=2.1 ; \quad \sigma^{2}=\operatorname{Var}\left[X_{i}\right]=2.1-(0.9)^{2}=1.29$, so $\sigma=1.136$.
Let $S=\sum_{i=1}^{100} X_{i}$. Then

$$
P(S \leq-70)=P\left(\frac{S-n \mu}{\sigma \sqrt{n}} \leq \frac{-70-100 \times(-0.9)}{10 \times 1.136}\right) \approx P(Z \leq 1.76) \approx 0.9608
$$

(Here Z has standard normal distribution.)
(ii) Denote $Y_{i}=X_{i}^{2}$. The PMF of Y_{i} is $P\left(Y_{i}=4\right)=0.5 ; P\left(Y_{i}=0\right)=0.4$; $P\left(Y_{i}=1\right)=0.1$.

$$
\mu=E\left[Y_{i}\right]=0.5 \times 4+0.1 \times 1=2.1
$$

$E\left[Y_{i}^{2}\right]=0.5 \times 16+0.1 \times 1=8.1 ; \quad \sigma^{2}=\operatorname{Var}\left[Y_{i}\right]=8.1-(2.1)^{2}=3.69$, so $\sigma=1.921$.
Let $S=\sum_{i=1}^{100} X_{i}^{2}=\sum_{i=1}^{100} Y_{i}$. Then

$$
\begin{aligned}
& P(S \geq 200)=P\left(\frac{S-n \mu}{\sigma \sqrt{n}} \geq \frac{200-100 \times(2.1)}{10 \times 1.921}\right) \\
& \approx P(Z \geq-0.521)=P(Z \leq+0.521) \approx 0.6985
\end{aligned}
$$

(Here Z has standard normal distribution.)
(b) Set $S_{n}=\sum_{i=1}^{n} X_{i}^{2}$

$$
0.99=P\left(S_{n} \geq 200\right) \approx P\left(Z \geq \frac{200-2.1 n}{1.921 \sqrt{n}}\right)=P\left(Z \leq \frac{2.1 n-200}{1.921 \sqrt{n}}\right)
$$

The 99% critical value is 2.33 , so we must solve for n

$$
2.1 n-200=2.33 \times 1.921 \sqrt{n}
$$

Set $n=x^{2}$. The equation above becomes

$$
2.1 x^{2}-4.476 x-200=0
$$

So,

$$
x=\frac{4.476+\sqrt{4.476^{2}+800 \times 2.1}}{2 \times 2.1}=10.88 .
$$

(The other root is negative.) Hence, $n=119$ is the smallest integer $\geq x^{2}$.

7. [Similar to homework.]

(a) $u=g(x)=\sqrt{\frac{x}{n}}$, so $x=g^{-1}(u)=n u^{2}$ and $\frac{d x}{d u}=2 n u$. Thus,

$$
\begin{gathered}
f_{U}(u)=f_{X}\left(g^{-1}(u)\right) \frac{d}{d u}\left[g^{-1}(u)\right]=\frac{1}{2^{n / 2} \Gamma(n / 2)}\left(n u^{2}\right)^{n / 2-1} e^{-n u^{2} / 2} 2 n u \\
=\frac{1}{2^{n / 2-1} \Gamma(n / 2)} n^{n / 2}\left(u^{2}\right)^{\frac{n-1}{2}} e^{-n u^{2} / 2}
\end{gathered}
$$

(b)

$$
\begin{gathered}
f(t)=\int_{-\infty}^{\infty}|u| f_{U}(u) f_{Y}(u t) d u\left(\text { since } f_{U}(u)=0 \text { if } u<0\right) \\
=\int_{0}^{\infty} u f_{U}(u) f_{Y}(u t) d u=\int_{0}^{\infty} \frac{1}{2^{n / 2-1} \Gamma(n / 2)} n^{n / 2}\left(u^{2}\right)^{n / 2} e^{-n u^{2} / 2} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} t^{2} / 2} d u \\
=\frac{n^{n / 2}}{2^{n / 2-1} \Gamma(n / 2) \sqrt{2 \pi}} \int_{0}^{\infty}\left(u^{2}\right)^{n / 2} e^{-\left(n+t^{2}\right) u^{2} / 2} d u
\end{gathered}
$$

(Set $u^{2}=x ; 2 u d u=d x ; d u=\frac{d x}{2 \sqrt{x}}=\frac{1}{2} x^{-1 / 2} d x$.)

$$
\begin{gathered}
=\frac{n^{n / 2}}{2^{\frac{n-1}{2}} \sqrt{\pi} \Gamma(n / 2)} \int_{0}^{\infty} x^{n / 2} e^{-\frac{\left(n+t^{2}\right) x}{2}} \frac{1}{2} x^{-1 / 2} d x \\
=\frac{n^{n / 2}}{2^{\frac{n+1}{2}} \sqrt{\pi} \Gamma(n / 2)} \int_{0}^{\infty} x^{\left(\frac{n+1}{2}\right)-1} e^{-\frac{\left(n+t^{2}\right) x}{2}} d x
\end{gathered}
$$

(We have obtained the Gamma integral with $\alpha=\frac{n+1}{2}$ and $\lambda=\frac{1}{2}\left(n+t^{2}\right)$.)

$$
\begin{gathered}
=\frac{n^{n / 2}}{2^{\frac{n+1}{2}} \sqrt{\pi} \Gamma(n / 2)} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\left[\frac{1}{2}\left(n+t^{2}\right)\right]^{\frac{n+1}{2}}}=\frac{n^{-1 / 2} n^{n / 2+1 / 2} \Gamma\left(\frac{n+1}{2}\right)}{2^{n / 2+1 / 2}\left(\frac{1}{2}\right)^{n / 2+1 / 2}\left(n+t^{2}\right)^{n / 2+1 / 2} \sqrt{\pi} \Gamma\left(\frac{n}{2}\right)} \\
=\frac{1}{\sqrt{n \pi}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}\left(1+\frac{t^{2}}{n}\right)^{-\left(\frac{n+1}{2}\right)} .
\end{gathered}
$$

