1. In an automatic telephone exchange the probability that any one call is wrongly connected is 0.001 .
(a) For a day when 2000 independent calls are connected, determine the probability that at most 2 wrong connections are made using the exact formula. (The answer must be presented with precision to 6 decimal places.)
[7 marks]
(b) Use the Poisson distribution to find an approximate value of the probability asked for in part (a), with precision to 6 decimal places. Comment on the accuracy of the Poisson approximation.
[4 marks]
(c) What is the minimum number of independent calls required before there is a probability of 0.9 that at least one of the calls is wrongly connected.
[9 marks]
2. An expensive piece of equipment is insured with the insurance company First Pacific Inc. according to the following table in which T denotes the first time (in years) that the equipment fails to function within specified parameters; X denotes the amount (in millions of pounds) First Pacific Inc. will have to pay to the owners of the equipment:

$$
\begin{array}{llr}
X=5 & \text { if } & T<1 \\
X=4 & \text { if } & 1 \leq T<2 \\
X=2 & \text { if } & 2 \leq T<3 \\
X=0 & \text { if } & T \geq 3
\end{array}
$$

Suppose T is an exponential random variable defined by

$$
P(T>t)=\exp (-0.5 t), t \geq 0
$$

(a) Find the probability that First Pacific Inc. will pay compensation higher than $£ 3$ million.
[4 marks]
(b) Find the expected compensation First Pacific Inc. will pay. [10 marks]
(c) Suppose First Pacific Inc. buys a policy from Lloyds of London PLC. to protect itself against very large claims. According to this policy, if First Pacific Inc. agrees to settle a claim of $£ x$ million, it will, in fact, pay only $£ f(x)$ million, where $f(x) \leq x$, and the rest will be paid by Lloyds of London PLC.. Suppose that

$$
f(x)=x \quad \text { if } x<3, \quad f(x)=3 \text { if } x \geq 3
$$

Find the expected compensation First Pacific Inc. will pay assuming it has purchased the policy described in this part of the question.
3. Let $X \sim U[0,4]$ be a uniform on $[0,4]$ random variable and $Y=\sqrt{X}$.
(a) Write down the probability density function of X.
[2 marks]
(b) Determine the range of Y.
[2 marks]
(c) Find the cumulative distribution function of Y.
(d) Find the probability density function of Y.
[4 marks]
(e) Find the mathematical expectation of Y.
[4 marks]
4. Suppose the random variables X and Y are jointly continuous with joint density function

$$
f(x, y)=2(x+y), \quad 0 \leq y \leq x \leq 1
$$

(a) Draw the region where the density is positive.
(b) Find the marginal densities of X and Y.
[9 marks]
(c) Find the conditional density of Y given $X=x, 0 \leq x \leq 1$.
[3 marks]
(d) Calculate $P\left(\left.Y>\frac{1}{3} \right\rvert\, X=1\right)$.
5. Suppose the random variables X and Y are jointly continuous with joint density function

$$
f(x, y)=x e^{-x(y+1)}, \quad x, y \geq 0
$$

Let the random variables U and V be defined by

$$
U=X+Y, \quad V=\ln (Y+1)
$$

Find the joint density of U and V, and indicate the range of the random vector (U, V).
[20 marks]
6. The random variables X_{1}, \ldots, X_{100} are independent and identically distributed, each with probability mass function

$$
p(-2)=0.5, \quad p(0)=0.4, \quad p(1)=0.1
$$

(a) Using the Central Limit Theorem, find approximations for
(i) $P\left(\sum_{i=1}^{100} X_{i} \leq-70\right)$
[6 marks]
(ii) $P\left(\sum_{i=1}^{100} X_{i}^{2} \geq 200\right)$
[6 marks]
(b) Consider now a sample X_{1}, \ldots, X_{n}, of size n. How large must n be to ensure that the sum of squares, $\sum_{i=1}^{100} X_{i}^{2}$, is greater than 200 with probability greater than 0.99 ?
[8 marks]
7. Suppose the random variable X has a χ_{n}^{2} distribution, i.e. it has density function

$$
f_{X}(x)=\frac{1}{2^{n / 2} \Gamma\left(\frac{n}{2}\right)} x^{\frac{n}{2}-1} e^{-x / 2}, \quad x>0
$$

(a) Show that the random variable $U=\sqrt{X / n}$ has density function

$$
f_{U}(u)=\frac{1}{2^{(n / 2)-1} \Gamma\left(\frac{n}{2}\right)} n^{(n / 2)}\left(u^{2}\right)^{\frac{n-1}{2}} e^{-n u^{2} / 2} .
$$

[7 marks]
(b) Suppose Y is a standard normal random variable which is independent of X. Using the result of part (a) show that the t-statistic

$$
T=\frac{Y}{\sqrt{X / n}}
$$

has density function

$$
f_{T}(t)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n \pi} \Gamma\left(\frac{n}{2}\right)}\left(1+\frac{t^{2}}{n}\right)^{-\frac{(n+1)}{2}} .
$$

[13 marks]

Hint: Recall that the quotient Y / U of independent continuous random variables Y and U has density function

$$
f(t)=\int_{-\infty}^{\infty}|u| f_{U}(u) f_{Y}(u t) d u
$$

and that the equality

$$
\int_{0}^{\infty} x^{\alpha-1} e^{-\lambda x} d x=\frac{\Gamma(\alpha)}{\lambda^{\alpha}}
$$

holds for all $\alpha, \lambda>0$.
[NORMAL DISTRIBUTION TABLE]

