MATH264 January 2006 Exam Solutions

All questions similar to seen exercises except where marked as Bookwork (B).

1. (a) If $X \sim \operatorname{Bin}(n, p)$, then for $x=0,1, \ldots, n$,

$$
\begin{aligned}
& \operatorname{Pr}(X=x)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \\
& \quad=n(n-1) \ldots(n-x+1) \frac{p^{x}}{x!}(1-p)^{n-x} \\
& \quad=\left(\frac{n}{n}\right)\left(\frac{n-1}{n}\right) \ldots\left(\frac{n-x+1}{n}\right) \frac{(n p)^{x}}{x!}(1-p)^{n-x} \\
& \quad=1\left(1-\frac{1}{n}\right) \ldots\left(1-\frac{x-1}{n}\right) \frac{(n p)^{x}}{x!}(1-p)^{n-x}
\end{aligned}
$$

Now suppose that $n \rightarrow \infty$ and $p \rightarrow 0$ in such a way that $n p \rightarrow \lambda$. Then for fixed x,

$$
\lim _{\substack{n \rightarrow \infty \\ p \rightarrow 0}} \operatorname{Pr}(X=x)=\lim _{\substack{n \rightarrow \infty \\ p \rightarrow 0}} 1\left(1-\frac{1}{n}\right) \ldots\left(1-\frac{x-1}{n}\right) \frac{\lambda^{x}}{x!} \frac{\left(1-\frac{\lambda}{n}\right)^{n}}{\left(1-\frac{\lambda}{n}\right)^{x}}
$$

Now as $n \rightarrow \infty$,

$$
\left(1-\frac{\lambda}{n}\right)^{n} \rightarrow \mathrm{e}^{-\lambda}
$$

For each $s=1,2, \ldots, x-1$, and for $s=\lambda$,

$$
\left(1-\frac{s}{n}\right) \rightarrow 1
$$

Hence

$$
\begin{aligned}
\operatorname{Pr}(X=x) & \rightarrow 1 \times 1 \times \ldots \times 1 \frac{\lambda^{x}}{x!} \frac{\mathrm{e}^{-\lambda}}{1} \\
& =\frac{\lambda^{x}}{x!} \mathrm{e}^{-\lambda}
\end{aligned}
$$

which is the $\operatorname{Poisson}(\lambda)$ probability mass function.
(b) Poisson provides good approximation to binomial for $n>50$ with $n p<5$.
(c) Denoting by X the number with disease in the sample, then $X \sim \operatorname{Bin}(400,0.0002)$, since disease status of distinct individuals independent and in random sample probability of having disease is the same for each individual, being $1 / 5000=0.0002$. Approximating X by Poisson(0.08),

$$
\begin{aligned}
\operatorname{Pr}(X \leq 4) & =\mathrm{e}^{-0.08}\left(1+\frac{0.08}{1!}+\frac{0.08^{2}}{2!}+\frac{0.08^{3}}{3!}+\frac{0.08^{4}}{4!}\right) \\
& =\mathrm{e}^{-0.08}(1+0.08+0.0032+0.000085333+0.000001706) \\
& =1.08328704 \times \mathrm{e}^{-0.08} \\
& =0.999999974
\end{aligned}
$$

Poisson approximation is appropriate because number of trials $n=400$ is large, success probability $p=0.0002$ is small. More specifically, $n>50$ and $n p=0.08<5$.
2. (a) $\operatorname{Pr}(X=0)=\operatorname{Pr}($ First ball drawn is red $)=1 / 2$
$\operatorname{Pr}(X=1)=\operatorname{Pr}($ First white, second red $)=1 / 2 \times(2 / 3)=1 / 3$
$\operatorname{Pr}(X=2)=\operatorname{Pr}($ First white, second white $)=1 / 2 \times(1 / 3)=1 / 6$
(b) $E[X]=(1 / 2) \times 0+(1 / 3) \times 1+(1 / 6) \times 2=2 / 3$
$\operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}=\left((1 / 2) \times 0^{2}+(1 / 3) \times 1^{2}+(1 / 6) \times 2^{2}\right)-(2 / 3)^{2}=1-$ $(4 / 9)=5 / 9$
(c) Letting $S=\sum_{i=1}^{100} X_{i}$, then S is approximately Normal, mean 200/3, variance 500/9.

$$
\begin{aligned}
\operatorname{Pr}(64 \leq S \leq 81) & =\operatorname{Pr}(63.5 \leq S \leq 81.5) \\
& \approx \operatorname{Pr}\left(\frac{63.5-(200 / 3)}{\sqrt{500 / 9}} \leq S \leq \frac{81.5-(200 / 3)}{\sqrt{500 / 9}}\right) \\
& =\operatorname{Pr}(-0.42 \leq Z \leq 1.99) \\
& =\operatorname{Pr}(Z \leq 1.99)-(1-\operatorname{Pr}(Z \leq 0.42)) \\
& =0.9767-(1-0.6628) \\
& =0.6395
\end{aligned}
$$

(d) For drawing with replacement, the probability of drawing a red ball is $1 / 2$ at each draw and successive draws are independent, so the probability of drawing y white balls followed by a red ball is $P(Y=y)=(1 / 2) \times(1-(1 / 2))^{y}=(1 / 2)^{y+1}$ for $y=0,1,2, \ldots$.
3. (a) For $t \geq 0$,

$$
\begin{aligned}
F_{T}(t) & =\int_{0}^{t} \lambda \mathrm{e}^{-\lambda u} d u \\
& =\left[\mathrm{e}^{-\lambda u}\right]_{0}^{t} \\
& =1-\mathrm{e}^{-\lambda t} \quad \text { for } t \geq 0 \\
F_{T}(t) & =0 \quad \text { for } t<0 \\
E[T] & =\int_{-\infty}^{\infty} t f(t) d t \\
& =\int_{0}^{\infty} t \lambda \mathrm{e}^{-\lambda t} d t \\
& =\left[-t \mathrm{e}^{-\lambda t}\right]_{0}^{\infty}+\int_{0}^{\infty} \lambda \mathrm{e}^{-\lambda t} d t \\
& =0+\left[\frac{\mathrm{e}^{-\lambda t}}{-\lambda}\right]_{0}^{\infty} \\
& =0+\frac{1}{\lambda} \\
& =\frac{1}{\lambda}
\end{aligned}
$$

(b) (i) Have $0 \leq T<\infty$ and $Y=1-\mathrm{e}^{-2 T}$, so that $0 \leq Y<1$.
(ii) For $0 \leq y<1$,

$$
\begin{aligned}
\operatorname{Pr}(Y \leq y) & =\operatorname{Pr}\left(1-\mathrm{e}^{-2 T} \leq y\right) \\
& =\operatorname{Pr}\left(\mathrm{e}^{-2 T} \geq 1-y\right) \\
& =\operatorname{Pr}(-2 T \geq \ln (1-y)) \\
& =\operatorname{Pr}(T \leq-(1 / 2) \ln (1-y)) \\
& =F_{T}(-(1 / 2) \ln (1-y)) \\
& =1-\mathrm{e}^{\lambda(1 / 2) \ln (1-y)} \\
& =1-\mathrm{e}^{2 \ln (1-y)} \\
& =1-(1-y)^{2} \\
F_{Y}(y) & = \begin{cases}0 & y<0 \\
1-(1-y)^{2} & 0 \leq y<1 \\
1 & y \geq 1\end{cases}
\end{aligned}
$$

(iii) For $0 \leq y<1$,

$$
\begin{aligned}
f_{Y}(y) & =\frac{d}{d y}\left(1-(1-y)^{2}\right) \\
& =2(1-y) \\
f_{Y}(y) & = \begin{cases}2(1-y) & 0 \leq y<1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
E[Y] & =\int_{0}^{1} 2 y(1-y) d y=\left[y^{2}-\frac{2 y^{3}}{3}\right]_{0}^{1}=1-\frac{2}{3}=\frac{1}{3} \\
E\left[Y^{2}\right] & =\int_{0}^{1} 2 y^{2}(1-y) d y=\left[\frac{2 y^{3}}{3}-\frac{y^{4}}{2}\right]_{0}^{1}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6} \\
\operatorname{Var}[Y] & =\frac{1}{6}-\left(\frac{1}{3}\right)^{2}=\frac{1}{18}
\end{aligned}
$$

4. (a) $\operatorname{Cov}[X, Y]=E[(X-E[X])(Y-E[Y])]$
$\operatorname{Corr}[X, Y]=\operatorname{Cov}[X, Y] / \sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}$
Correlation values lie between -1 and +1 ; positive correlation indicates that the two variables tend to increase together, negative correlation that as one increases, the other decreases; the larger the absolute value of correlation, the stronger the linear relationship. Correlation +1 and -1 indicate a perfect linear relationship between the two variables; correlation 0 indicates no linear relationship.
(b) (i) Marginal mass functions:

$$
\begin{aligned}
& \operatorname{Pr}(X=2)=0.5, \operatorname{Pr}(X=4)=0.5 \\
& \operatorname{Pr}(Y=0)=0.3, \operatorname{Pr}(Y=1)=0.3, \operatorname{Pr}(Y=2)=0.4 \\
& E[X]=0.5 \times 2+0.5 \times 4=3 ; E[Y]=0.3 \times 0+0.3 \times 1+0.4 \times 2=1.1 \\
& \operatorname{Var}[X]=\left(0.5 \times 2^{2}+0.5 \times 4^{2}\right)-3^{2}=10-9=1 \\
& \operatorname{Var}[Y]=\left(0.3 \times 0^{2}+0.3 \times 1^{2}+0.4 \times 2^{2}\right)-1.1^{2}=1.9-1.21=0.69
\end{aligned}
$$

(ii) $\operatorname{Cov}[X, Y]=(0.1 \times 0 \times 2+0.1 \times 1 \times 2+0.3 \times 2 \times 2+0.2 \times 0 \times 4+0.2 \times 1 \times 4$ $+0.1 \times 2 \times 4)-3 \times 1.1=3-3.3=-0.3$ $\operatorname{Corr}[X, Y]=-0.3 / \sqrt{1 \times 0.69} \approx-0.3612$
(iii) Correlation value indicates a weak/moderate negative relationship between X and Y, as can be seen from the joint mass function, where the smallest probability values of 0.1 are associated with (X, Y) pairs where either X and Y are both small or X and Y are both large.
5. (a)

$$
\begin{aligned}
\int f(x, y) d y d x & =k \int_{x=0}^{1} \int_{y=0}^{1} x(1-x)+y(1-y) d y d x \\
& =k\left(\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{x=0}^{1}+\left[\frac{y^{2}}{2}-\frac{y^{3}}{3}\right]_{y=0}^{1}\right)=k\left(\frac{1}{6}+\frac{1}{6}\right)=\frac{k}{3}
\end{aligned}
$$

So $k=3$.
Marginals:

$$
\begin{aligned}
f_{X}(x) & =\int_{y=0}^{1} f(x, y) d y=\int_{y=0}^{1} 3(x(1-x)+y(1-y)) d y \\
& =3\left[x(1-x) y+\frac{y^{2}}{2}-\frac{y^{3}}{3}\right]_{y=0}^{1} \\
& =3\left(x(1-x)+\frac{1}{6}\right)=3 x(1-x)+\frac{1}{2}
\end{aligned}
$$

By symmetry, $f_{Y}(y)=3 y(1-y)+\frac{1}{2}$
(b) (i) Inverse transformation is $x=(u+v) / 2, y=(v-u) / 2$, so

$$
\begin{array}{cc}
\frac{d x}{d u}=\frac{1}{2}, & \frac{d x}{d v}=\frac{1}{2} \\
\frac{d y}{d u}=-\frac{1}{2}, & \frac{d y}{d v}=\frac{1}{2} \\
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{rr}
\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right|=\frac{1}{2}
\end{array}
$$

(ii)

$$
\begin{aligned}
f_{U, V}(u, v) & =f_{X, Y}((u+v) / 2,(v-u) / 2)\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \\
& =3\left(\frac{1}{2}(u+v)\left(1-\frac{1}{2}(u+v)\right)+\frac{1}{2}(v-u)\left(1-\frac{1}{2}(v-u)\right)\right) \times \frac{1}{2} \\
& =(3 / 8)((u+v)(2-(u+v))+(v-u)(2-(v-u))) \\
& =(3 / 8)\left(2(u+v+v-u)-(u+v)^{2}-(v-u)^{2}\right) \\
& =(3 / 8)\left(4 v-2 u^{2}-2 v^{2}\right) \\
& =(3 / 2) v-(3 / 4)\left(u^{2}+v^{2}\right)
\end{aligned}
$$

(iii) Region of positive density:
6. (a) Differentiating $G_{U}(s)=E\left[s^{U}\right]$ with respect to s,

$$
\begin{aligned}
G_{U}^{\prime}(s) & =E\left[U s^{U-1}\right] & & G_{U}^{\prime \prime}(s)
\end{aligned}=E\left[U(U-1) s^{U-2}\right] \quad \text { so that } G_{U}^{\prime}(1)=E[U] \quad G_{U}^{\prime \prime}(1)=E[U(U-1)]
$$

and so
$G^{\prime \prime}(1)+G^{\prime}(1)-\left(G_{U}^{\prime}(1)\right)^{2}=E[U(U-1)]+E[U]-(E[U])^{2}=E\left[U^{2}\right]-(E[U])^{2}=\operatorname{Var}[U]$ as required.
(b)

$$
\begin{aligned}
G_{V}(s) & =\sum_{k=1}^{\infty} s^{k}\left(\frac{1}{2^{k} k \ln (2)}\right)=\frac{1}{\ln (2)} \sum_{k=1}^{\infty} \frac{1}{k}\left(\frac{s}{2}\right)^{k} \\
& =\frac{1}{\ln (2)} \ln \left(\frac{1}{1-(s / 2)}\right)=\ln \left(\frac{2}{2-s}\right) / \ln (2) \\
& =\frac{\ln (2)-\ln (2-s)}{\ln (2)}=1-\frac{\ln (2-s)}{\ln (2)}
\end{aligned}
$$

(c) Differentiating,

$$
\begin{aligned}
G_{V}^{\prime}(s) & =-\left(\frac{1}{2-s}\right) \times(-1) \times \frac{1}{\ln (2)}=\frac{1}{\ln (2)}\left(\frac{1}{2-s}\right) \Rightarrow G^{\prime}(1)=\frac{1}{\ln (2)} \\
G_{V}^{\prime \prime}(s) & =\frac{1}{\ln (2)}\left(\frac{1}{2-s}\right)^{2} \Rightarrow G^{\prime \prime}(1)=\frac{1}{\ln 2}
\end{aligned}
$$

so that

$$
E[V]=\frac{1}{\ln (2)}, \quad \operatorname{Var}[V]=\frac{1}{\ln (2)}+\frac{1}{\ln (2)}-\left(\frac{1}{\ln (2)}\right)^{2}=\frac{2 \ln (2)-1}{(\ln (2))^{2}}
$$

7. (a) For $y \geq 0$,

$$
\begin{aligned}
\operatorname{Pr}(Y \leq y) & =\operatorname{Pr}\left(Z^{2} \leq y\right) \\
& =\operatorname{Pr}(-\sqrt{y} \leq Z \leq \sqrt{y}) \\
& =2 \operatorname{Pr}(0 \leq Z \leq \sqrt{y})
\end{aligned}
$$

$$
\begin{aligned}
& =2 \int_{0}^{\sqrt{y}} \frac{1}{\sqrt{2 \pi}} \exp \left(-z^{2} / 2\right) d z \\
\text { so } f_{Y}(y) & =\frac{d}{d y} \operatorname{Pr}(Y \leq y) \\
& =\frac{2}{\sqrt{2 \pi}} \exp (-y / 2) \times(1 / 2) y^{-1 / 2} \\
& =\frac{1}{\sqrt{2 \pi y}} \exp (-y / 2) \quad(y \geq 0)
\end{aligned}
$$

(b) $M_{Y}(t)=\left(\frac{1}{1-2 t}\right)^{1 / 2}$.
(c) If $Z_{1}, Z_{2}, \ldots, Z_{n}$ are independent standard normal random variables, then the distribution of $V=Z_{1}^{2}+\cdots+Z_{n}^{2}$ is called the chi-squared distribution with n degrees of freedom.
Hence

$$
M_{V}(t)=E\left[\mathrm{e}^{-t V}\right]=E\left[\mathrm{e}^{-t\left(Y_{1}+\cdots+Y_{n}\right)}\right]=\left(E\left[\mathrm{e}^{-t Y}\right]\right]^{n}
$$

where Y_{1}, \ldots, Y_{n} are independent χ_{1}^{2} random variables, so each have the moment generating function $M_{Y}(t)$ of part (b), and hence $M_{V}(t)=\left(\frac{1}{1-2 t}\right)^{n / 2}$.
From the given expression for mgf of Gamma distribution, have $\lambda_{n}=\frac{1}{2}$ and $\alpha_{n}=\frac{n}{2}$.

