
MATH261 January 2005 Exam Solutions

1. (a) Define

x1 = Tons of A produced per week

x2 = Tons of B produced per week

Problem is to maximise x0 = 400x1 + 300x2 (£ per week)

subject to

0.3x1 + 0.4x2 ≤ 300 (tons per week)

x1 ≥ 500 (tons per week)

x2 ≥ 200 (tons per week)

x1, x2 ≥ 0

(b) Define

x1 = Number of drivers working morning shift

x2 = Number of drivers working split shift

x3 = Number of drivers working afternoon shift

Problem is to minimise x0 = x1 + x2 + x3 (drivers)

subject to

x1 + x2 ≥ 50 (drivers)

x1 ≥ 30 (drivers)

x3 ≥ 30 (drivers)

x2 + x3 ≥ 45 (drivers)

x3 ≥ 20 (drivers)

x1, x2, x3 ≥ 0

Redundant constraints: x3 ≥ 20, x1 ≥ 0, x3 ≥ 0.
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2. (a) Feasible region:

Evaluating z(x, y) at vertices of feasible region, z(2, 0) = 2, z(4, 0) = 4, z(0, 3) = 12,

z(0, 2) = 8, so maximum is z = 12 at (x, y) = (0, 3).

At optimality, constraints x ≥ 0 and 3x + 4y ≤ 12 are binding; y ≥ 0, x + y ≥ 2 and

3x + 2y ≤ 12 are non-binding.

Constraint 3x + 2y ≤ 12 is redundant.

(b) Introducing slack variables s1, s2, s3, then tableaux are

x1 x2 x3 s1 s2 s3

x0 −3 −1 −1 0 0 0 0

s1 1 1 1 1 0 0 4

s2 2 1 0 0 1 0 2

s3 −1 1 1 0 0 1 2

x1 x2 x3 s1 s2 s3

x0 0 0.5 −1 0 1.5 0 3

s1 0 0.5 1 1 −0.5 0 3

x1 1 0.5 0 0 0.5 0 1

s3 0 1.5 1 0 0.5 1 3

or

x1 x2 x3 s1 s2 s3

x0 0 0.5 −1 0 1.5 0 3

s1 0 0.5 1 1 −0.5 0 3

x1 1 0.5 0 0 0.5 0 1

s3 0 1.5 1 0 0.5 1 3

x1 x2 x3 s1 s2 s3

x0 0 1 0 1 1 0 6

x3 0 0.5 1 1 −0.5 0 3

x1 1 0.5 0 0 0.5 0 1

s3 0 1 0 −1 1 1 0

x1 x2 x3 s1 s2 s3

x0 0 2 0 0 2 1 6

s1 0 −1 0 1 −1 −1 0

x1 1 0.5 0 0 0.5 0 1

x3 0 1.5 1 0 0.5 1 3

So optimal solution is x0 = 6, when x1 = 1, x2 = 0, x3 = 3.

Check constraints:
x1 + x2 + x3 = 1 + 0 + 3 = 4 ≤ 4

2x1 + x2 = 2 + 0 = 2 ≤ 2

−x1 + x2 + x3 = −1 + 0 + 3 = 2 ≤ 2

x1, x2, x3 ≥ 0

Basic variables are x1, x3, s3; alternative optimal basis x1, x3, s1. Or vice-versa. Or

could give either x1, x3, s2 or x1, x2, x3 as alternative basis.
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3. (a) Feasible region:

Evaluating z at vertices gives z(0, 0) = 0, z(2, 0) = 4, z(0.5, 3) = 7, z(0, 2) = 4 so

maximal value is z = 7 at (x, y) = (0.5, 3).

(i) Lines −2x + y = 2 and 2x = 4 intersect at (2, 6), constraint 2x + y ≤ c become

redundant when line 2x + y = c passes through the same point, so when c =

2 × 2 + 6 = 10.

(ii) Optimum remains at (0.5, 3) until objective line 2x + by = const is parallel to

the line 2x + y = 4, that is when b = 1, so within the range b ≥ 1 the optimum

point remains the same.

(iii) Optimal solution is affected when k increases so that the line 2x+ky = 4 crosses

into the feasible region, which happens when it coincides with the line 2x+y = 4,

so when k = 1. That is, k can increase by 1 before solution is affected.

(b) Dual simplex method appropriate when there are ≥ constraints, and usually for

minimisation problems.

Introducing surplus variables s1, s2 and slack variable s3, then tableaux are

x1 x2 x3 s1 s2 s3

x0 3 1 1 0 0 0 0

s1 1 −2 −1 1 0 0 −2

s2 −2 1 -1 0 1 0 −5

s3 1 1 2 0 0 1 12

x1 x2 x3 s1 s2 s3

x0 1 2 0 0 1 0 −5

s1 3 −3 0 1 −1 0 3

x3 2 −1 1 0 −1 0 5

s3 −3 3 0 0 2 1 2

So optimal solution is x0 = −5, when x1 = 0, x2 = 0, x3 = 5.
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4. (a) Dual is

D: minimise y0 = 7y1 + y2 + 2y3

subject to

2y1 − y2 + y3 ≥ 1

3y1 + y2 ≥ 1

y1, y2, y3 ≥ 0

Given x∗

1
= 2, x∗

2
= 1 then

2x∗

1
+ 3x∗

2
= 7, first constraint satisfied with equality;

−x∗

1
+ x∗

2
= −1, second constraint not satisfied with equality;

x∗

1
= 2, third constraint satisfied with equality.

Given y∗
1

= 1

3
, y∗

2
= 0, y∗

3
= 1

3
then

2y∗
1
− y∗

2
+ y∗

3
= 1, first constraint satisfied with equality;

3y∗
1

+ y∗
2

= 1, second constraint satisfied with equality.

Complementary slackness requires that for those constraints not satisfied with equal-

ity, the dual variable is zero. For the primal, the second constraint is the only one

not satisfied with equality, so since y∗
2

= 0, complementary slackness is satisfied. For

the dual, both constraints are satisfied with equality, so complementary slackness is

satisfied.

(b) O is inferior to A, B, C, D; D is inferior to B, C.

The NIS consists of the edges AB and BC.

When w = 0, optimal point is A.

When w = 1, optimal point is C.

Optimum moves from A to B when

19(1 − w) + 2w = 14(1 − w) + 16w

19 − 17w = 14 + 2w

−19w = −5

w = 5/19

Optimum moves from B to C when

14(1 − w) + 16w = 10(1 − w) + 17w

14 + 2w = 10 + 7w

−5w = −4

w = 4/5

0 ≤ w < 5/19: point A optimal

w = 5/19: edge AB optimal

5/19 < w < 4/5: point B optimal

w = 4/5: edge BC optimal

4/5 < w ≤ 1: point C optimal
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5. (a) Lagrangean is L(x, y;λ) = x + y + 3xy + 5x + 10y + λ (4x + y − 5), so for optimum

require

Lx = 2x + 3y + 5 + 4λ = 0

Ly = 2y + 3x + 10 + λ = 0

Lλ = 4x + y − 5 = 0

To solve for x, y, λ,

3Lx − 2Ly = 5y − 5 + 10λ = 0 ⇒ y = 1 − 2λ

then Lx = 0 ⇒ x = −(3y + 5 + 4λ)/2 = −(3 − 6λ + 5 + 4λ)/2 = −(8 − 2λ)/2 = −4 + λ

next, Lλ = 0 ⇒ 4(−4 + λ) + (1 − 2λ) − 5 = 0 ⇒ 2λ − 20 = 0 ⇒ λ = 10

hence minimum occurs at x∗ = 6, y∗ = −19.

(b)

f(x, y) = x2 + y2 − xy − x + 4

∇f = (2x − y − 1, 2y − x)

Starting from (x0, y0) = (0, 0), have (∇f)
0

= (−1, 0), so search along the line

(x, y) = (0, 0) + θ(−1, 0) = (−θ, 0)

so f(x, y) = θ2 + θ + 4

df/dθ = 2θ + 1

stationary point at θ = −0.5, so (x1, y1) = (0.5, 0).

Hence (∇f)
1

= (0,−0.5), so search along the line

(x, y) = (0.5, 0) + θ(0,−0.5) = (0.5,−0.5θ)

so f(x, y) = 0.25 + 0.25θ2 + 0.25θ − 0.5 + 4

= 0.25θ2 + 0.25θ + 3.75

df/dθ = 0.5θ + 0.25

stationary point at θ = −0.5, so (x2, y2) = (0.5, 0.25).
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6. (a) Stock level against time:

With shortages:

(b) To minimise costs, differentiate TCU with respect to y.

d

dy
TCU =

−KD

y2
+

h

2
, so at S.P.s,

KD

y2
=

h

2
⇒ y2 =

2KD

h
⇒ y∗ =

√

2KD/h

as required.

TCU (y∗) =
KD

y∗
+

hy∗

2
=

KD
√

2KD/h
+

h
√

2KD/h

2
=

√

KDh

2
+

√

KDh

2
=

√
2KDh

as required.

With K = 80, D = 360, h = 0.64, then

y∗ =
√

2 × 80 × 360/0.64 =
√

90000 = 300 items

TCU (y∗) =
√

2 × 80 × 360 × 0.64 =
√

36864 = £192

Average stock held = y∗/2 = 300/2 = 150 items

T = y∗/D = 300/360 = 0.83 weeks.

To find required range of y, set ρ = y/y∗, then

1.03 = (ρ + (1/ρ))/2

2.06ρ = ρ2 + 1

ρ2 − 2.06ρ + 1 = 0

ρ =
(

2.06 ±
√

2.062 − 4
)

/2 = 1.03 ± 0.2468

= 0, 7832, 1.2768

So required range is [0.7832y∗, 1.2768y∗] = [235, 383] items.
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7. (a)

U V W ui

5 7 9

F 4 8 0

0

4 6 9

G 2 3 -1

1

6 8 4

H 7 1

0 -6

vj 5 7 9

(Compute ui, vj using ui + vj = cij for cells ij in the basis (and uF = 0), then for

non-basic cells compute δij = cij − ui − vj .)

Not optimal, as δHW is negative. Increase flow through cell with most negative δ

value, ie cell HW, by as much as possible.

U V W ui

5 7 9

F 6 6 0

-6

4 6 9

G 5 -7

6 7

6 8 4

H 5 2 -5

6

vj 5 13 9

Increase flow through cell FV.

U V W ui

5 7 9

F 6 5 1 0

4 6 9

G 5 -1

0 1

6 8 4

H 7 -5

6 6

vj 5 7 9

No negative δ values, so optimum has been attained.

7



Have δGU = 0, so there is an alternative optimal basis. Bringing GU into the basis

gives the alternative optimal solution

U V W

5 7 9

F 1 10 1

4 6 9

G 5

6 8 4

H 7

(b) Initial basic feasible solution is

K L M ui

5 7 9

A 7 5 0

1

8 6 7

B 0 5 -1

4

8 8 2

C 7 -6

9 7

vj 5 7 8

No negative δ values, so solution is optimal.

If supply at A is increased to 13, then total supply is 25, total demand is 24. To

model as a balanced problem, introduce a dummy destination with demand 1, with

‘transportation costs’ to the dummy destination representing costs of over-production,

eg storage costs at the three sources.

If demand at M then increases by 10, no need for dummy destination, total demand is

34, total supply is 25. To model as a balanced problem, need to introduce a dummy

source with supply = 9, with ‘transportation costs’ from the dummy source being

used to represent the cost of failing to meet demand.
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