1. (a) Define
$x_{1}=$ Tons of A produced per week
$x_{2}=$ Tons of B produced per week
Problem is to maximise $x_{0}=400 x_{1}+300 x_{2}$ (£ per week)
subject to

$$
\begin{aligned}
0.3 x_{1}+0.4 x_{2} & \leq 300(\text { tons per week }) \\
x_{1} & \geq 500(\text { tons per week }) \\
x_{2} & \geq 200(\text { tons per week }) \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

(b) Define
$x_{1}=$ Number of drivers working morning shift
$x_{2}=$ Number of drivers working split shift
$x_{3}=$ Number of drivers working afternoon shift
Problem is to minimise $x_{0}=x_{1}+x_{2}+x_{3}$ (drivers)
subject to

$$
\begin{aligned}
x_{1}+x_{2} & \geq 50 \text { (drivers) } \\
x_{1} & \geq 30 \text { (drivers) } \\
x_{3} & \geq 30 \text { (drivers) } \\
x_{2}+x_{3} & \geq 45 \text { (drivers) } \\
x_{3} & \geq 20 \text { (drivers) } \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Redundant constraints: $x_{3} \geq 20, x_{1} \geq 0, x_{3} \geq 0$.

Evaluating $z(x, y)$ at vertices of feasible region, $z(2,0)=2, z(4,0)=4, z(0,3)=12$, $z(0,2)=8$, so maximum is $z=12$ at $(x, y)=(0,3)$.
At optimality, constraints $x \geq 0$ and $3 x+4 y \leq 12$ are binding; $y \geq 0, x+y \geq 2$ and $3 x+2 y \leq 12$ are non-binding.
Constraint $3 x+2 y \leq 12$ is redundant.
(b) Introducing slack variables s_{1}, s_{2}, s_{3}, then tableaux are

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
x_{0}	-3	-1	-1	0	0	0	0
s_{1}	1	1	1	1	0	0	4
s_{2}	2	1	0	0	1	0	2
s_{3}	-1	1	1	0	0	1	2

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
x_{0}	0	0.5	-1	0	1.5	0	3
s_{1}	0	0.5	1	1	-0.5	0	3
x_{1}	1	0.5	0	0	0.5	0	1
s_{3}	0	1.5	1	0	0.5	1	3

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
x_{0}	0	0.5	-1	0	1.5	0	3
s_{1}	0	0.5	1	1	-0.5	0	3
x_{1}	1	0.5	0	0	0.5	0	1
s_{3}	0	1.5	1	0	0.5	1	3

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
x_{0}	0	1	0	1	1	0	6
x_{3}	0	0.5	1	1	-0.5	0	3
x_{1}	1	0.5	0	0	0.5	0	1
s_{3}	0	1	0	-1	1	1	0

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
x_{0}	0	2	0	0	2	1	6
s_{1}	0	-1	0	1	-1	-1	0
x_{1}	1	0.5	0	0	0.5	0	1
x_{3}	0	1.5	1	0	0.5	1	3

So optimal solution is $x_{0}=6$, when $x_{1}=1, x_{2}=0, x_{3}=3$.
Check constraints: $x_{1}+x_{2}+x_{3}=1+0+3=4 \leq 4$

$$
\begin{aligned}
2 x_{1}+x_{2} & =2+0=2 \leq 2 \\
-x_{1}+x_{2}+x_{3} & =-1+0+3=2 \leq 2 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Basic variables are x_{1}, x_{3}, s_{3}; alternative optimal basis x_{1}, x_{3}, s_{1}. Or vice-versa. Or could give either x_{1}, x_{3}, s_{2} or x_{1}, x_{2}, x_{3} as alternative basis.

Evaluating z at vertices gives $z(0,0)=0, z(2,0)=4, z(0.5,3)=7, z(0,2)=4$ so maximal value is $z=7$ at $(x, y)=(0.5,3)$.
(i) Lines $-2 x+y=2$ and $2 x=4$ intersect at (2,6), constraint $2 x+y \leq c$ become redundant when line $2 x+y=c$ passes through the same point, so when $c=$ $2 \times 2+6=10$.
(ii) Optimum remains at $(0.5,3)$ until objective line $2 x+b y=$ const is parallel to the line $2 x+y=4$, that is when $b=1$, so within the range $b \geq 1$ the optimum point remains the same.
(iii) Optimal solution is affected when k increases so that the line $2 x+k y=4$ crosses into the feasible region, which happens when it coincides with the line $2 x+y=4$, so when $k=1$. That is, k can increase by 1 before solution is affected.
(b) Dual simplex method appropriate when there are \geq constraints, and usually for minimisation problems.
Introducing surplus variables s_{1}, s_{2} and slack variable s_{3}, then tableaux are

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
x_{0}	3	1	1	0	0	0	0
s_{1}	1	-2	-1	1	0	0	-2
s_{2}	-2	1	-1	0	1	0	-5
s_{3}	1	1	2	0	0	1	12

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
x_{0}	1	2	0	0	1	0	-5
s_{1}	3	-3	0	1	-1	0	3
x_{3}	2	-1	1	0	-1	0	5
s_{3}	-3	3	0	0	2	1	2

So optimal solution is $x_{0}=-5$, when $x_{1}=0, x_{2}=0, x_{3}=5$.

D: minimise $y_{0}=7 y_{1}+y_{2}+2 y_{3}$
subject to

$$
\begin{aligned}
2 y_{1}-y_{2}+y_{3} & \geq 1 \\
3 y_{1}+y_{2} & \geq 1 \\
y_{1}, y_{2}, y_{3} & \geq 0
\end{aligned}
$$

Given $x_{1}^{*}=2, x_{2}^{*}=1$ then
$2 x_{1}^{*}+3 x_{2}^{*}=7$, first constraint satisfied with equality;
$-x_{1}^{*}+x_{2}^{*}=-1$, second constraint not satisfied with equality;
$x_{1}^{*}=2$, third constraint satisfied with equality.
Given $y_{1}^{*}=\frac{1}{3}, y_{2}^{*}=0, y_{3}^{*}=\frac{1}{3}$ then
$2 y_{1}^{*}-y_{2}^{*}+y_{3}^{*}=1$, first constraint satisfied with equality;
$3 y_{1}^{*}+y_{2}^{*}=1$, second constraint satisfied with equality.
Complementary slackness requires that for those constraints not satisfied with equality, the dual variable is zero. For the primal, the second constraint is the only one not satisfied with equality, so since $y_{2}^{*}=0$, complementary slackness is satisfied. For the dual, both constraints are satisfied with equality, so complementary slackness is satisfied.
(b) O is inferior to $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} ; \mathrm{D}$ is inferior to B, C.

The NIS consists of the edges AB and BC .
When $w=0$, optimal point is A.
When $w=1$, optimal point is C.
Optimum moves from A to B when

$$
\begin{aligned}
19(1-w)+2 w & =14(1-w)+16 w \\
19-17 w & =14+2 w \\
-19 w & =-5 \\
w & =5 / 19
\end{aligned}
$$

Optimum moves from B to C when

$$
\begin{aligned}
14(1-w)+16 w & =10(1-w)+17 w \\
14+2 w & =10+7 w \\
-5 w & =-4 \\
w & =4 / 5
\end{aligned}
$$

$0 \leq w<5 / 19$: point A optimal
$w=5 / 19$: edge AB optimal
$5 / 19<w<4 / 5$: point B optimal
$w=4 / 5$: edge BC optimal
$4 / 5<w \leq 1$: point C optimal

$$
\begin{aligned}
& L_{x}=2 x+3 y+5+4 \lambda=0 \\
& L_{y}=2 y+3 x+10+\lambda=0 \\
& L_{\lambda}=4 x+y-5=0
\end{aligned}
$$

To solve for x, y, λ,

$$
3 L_{x}-2 L_{y}=5 y-5+10 \lambda=0 \Rightarrow y=1-2 \lambda
$$

then $L_{x}=0 \Rightarrow x=-(3 y+5+4 \lambda) / 2=-(3-6 \lambda+5+4 \lambda) / 2=-(8-2 \lambda) / 2=-4+\lambda$

$$
\text { next, } L_{\lambda}=0 \Rightarrow 4(-4+\lambda)+(1-2 \lambda)-5=0 \Rightarrow 2 \lambda-20=0 \Rightarrow \lambda=10
$$

hence minimum occurs at $x^{*}=6, y^{*}=-19$.
(b)

$$
\begin{aligned}
f(x, y) & =x^{2}+y^{2}-x y-x+4 \\
\nabla f & =(2 x-y-1,2 y-x)
\end{aligned}
$$

Starting from $\left(x_{0}, y_{0}\right)=(0,0)$, have $(\nabla f)_{0}=(-1,0)$, so search along the line

$$
\begin{aligned}
(x, y) & =(0,0)+\theta(-1,0)=(-\theta, 0) \\
\text { so } f(x, y) & =\theta^{2}+\theta+4 \\
d f / d \theta & =2 \theta+1
\end{aligned}
$$

stationary point at $\theta=-0.5$, so $\left(x_{1}, y_{1}\right)=(0.5,0)$.
Hence $(\nabla f)_{1}=(0,-0.5)$, so search along the line

$$
\begin{aligned}
(x, y) & =(0.5,0)+\theta(0,-0.5)=(0.5,-0.5 \theta) \\
\text { so } f(x, y) & =0.25+0.25 \theta^{2}+0.25 \theta-0.5+4 \\
& =0.25 \theta^{2}+0.25 \theta+3.75 \\
d f / d \theta & =0.5 \theta+0.25
\end{aligned}
$$

stationary point at $\theta=-0.5$, so $\left(x_{2}, y_{2}\right)=(0.5,0.25)$.

With shortages:
(b) To minimise costs, differentiate TCU with respect to y.

$$
\frac{d}{d y} T C U=\frac{-K D}{y^{2}}+\frac{h}{2} \text {, so at S.P.s, } \frac{K D}{y^{2}}=\frac{h}{2} \Rightarrow y^{2}=\frac{2 K D}{h} \Rightarrow y^{*}=\sqrt{2 K D / h}
$$

as required.

$$
T C U\left(y^{*}\right)=\frac{K D}{y^{*}}+\frac{h y^{*}}{2}=\frac{K D}{\sqrt{2 K D / h}}+\frac{h \sqrt{2 K D / h}}{2}=\sqrt{\frac{K D h}{2}}+\sqrt{\frac{K D h}{2}}=\sqrt{2 K D h}
$$

as required.
With $K=80, D=360, h=0.64$, then
$y^{*}=\sqrt{2 \times 80 \times 360 / 0.64}=\sqrt{90000}=300$ items
$T C U\left(y^{*}\right)=\sqrt{2 \times 80 \times 360 \times 0.64}=\sqrt{36864}=£ 192$
Average stock held $=y^{*} / 2=300 / 2=150$ items
$T=y^{*} / D=300 / 360=0.83$ weeks.
To find required range of y, set $\rho=y / y^{*}$, then

$$
\begin{aligned}
1.03 & =(\rho+(1 / \rho)) / 2 \\
2.06 \rho & =\rho^{2}+1 \\
\rho^{2}-2.06 \rho+1 & =0 \\
\rho & =\left(2.06 \pm \sqrt{2.06^{2}-4}\right) / 2=1.03 \pm 0.2468 \\
& =0,7832,1.2768
\end{aligned}
$$

So required range is $\left[0.7832 y^{*}, 1.2768 y^{*}\right]=[235,383]$ items.

(Compute u_{i}, v_{j} using $u_{i}+v_{j}=c_{i j}$ for cells $i j$ in the basis (and $u_{F}=0$), then for non-basic cells compute $\delta_{i j}=c_{i j}-u_{i}-v_{j}$.)
Not optimal, as $\delta_{H W}$ is negative. Increase flow through cell with most negative δ value, ie cell HW, by as much as possible.

Increase flow through cell FV.

No negative δ values, so optimum has been attained.

	U	V	W
	5	10	9
F	1		1
G	4	6	9
	5		
	6	8	4
H			7

(b) Initial basic feasible solution is

No negative δ values, so solution is optimal.
If supply at A is increased to 13 , then total supply is 25 , total demand is 24 . To model as a balanced problem, introduce a dummy destination with demand 1 , with 'transportation costs' to the dummy destination representing costs of over-production, eg storage costs at the three sources.
If demand at M then increases by 10 , no need for dummy destination, total demand is 34 , total supply is 25 . To model as a balanced problem, need to introduce a dummy source with supply $=9$, with 'transportation costs' from the dummy source being used to represent the cost of failing to meet demand.

