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SECTION A

1. There is a finite field of size n if and only if n = pk where p ∈ N is a
prime and k ∈ N.

(i) There is a field with 19 elements, namely Z/19Z.

(ii) There is no field with 54 elements because 54 = 2× 27 is not prime.

(iii) There is a field with 9 elements because 9 = 32 is a prime power. To
find it we need to find an irreducible polynomial f of degree 2 in the ring
(Z/3Z)[x]. The quotient (Z/3Z)[x]/〈f〉 will then be a field with 9 elements.
Take f = x2 +1; this is irreducible because there are no roots in Z/3Z since
f(0) = 1, f(1) = 2 and f(2) = 2.
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2. To decide whether the abelian groups

A = 〈a, b | 4a + 6b, 3a + 3b〉 and B = 〈a, b, c | a + 3c, b− 4c, 2b− 2c〉

are isomorphic or not we write the relations in matrix form and reduce them to
diagonal matrices using invertible integral row and column operations.

First A:(
4 6
3 3

)
C2−C1−→

(
4 2
3 0

)
C1↔C2−→

(
2 4
0 3

)
C2−2C1−→

(
2 0
0 3

)

So A ∼= Z/2Z⊕ Z/3Z.

Then B: 1 0 3
0 1 −4
0 2 −2

 C3−3C1−→

 1 0 0
0 1 −4
0 2 −2


C3+4C2−→

 1 0 0
0 1 0
0 2 6

 R3−2R2−→

 1 0 0
0 1 0
0 0 6


So B ∼= Z/6Z.

Finally we note that Z/6Z ∼= Z/2Z⊕Z/3Z so that A and B are isomorphic.

3. A unit in a commutative ring R with a 1 is an element r ∈ R for which
there exists a multiplicative inverse s ∈ R with rs = 1.

(i) 3 is a unit in Q because 3× 1
3

= 1.

(ii) 3 is not a unit in Z/6Z because it is a zero-divisor: 2× 3 = 0.

(iii) 3 is a unit in Z/8Z because 3× 3 = 1.

(iv) x2 is not a unit in Z[x] because the degree of x2f is ≥ 2 for any f 6= 0.

(v) 1 − i is not a unit in Z[i] because the only units are the elements ±1,±i
which have complex norm 1.
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4. An irreducible element of R is a non-zero non-unit r ∈ R such that if
r = st then either s or t is unit.

(i) f = x3 + x + 1 is irreducible in (Z/5Z)[x] because it has no roots: f(0) =
1, f(1) = 3, f(2) = 1, f(3) = 1 and f(4) = 4. (If a cubic factorises then it
must have at least one linear factor, i.e. at least one root.)

(ii) f = x3 + x + 1 is irreducible in Q[x] if it is irreducible in Z[x] (by Gauss’s
lemma). We can check that f has no integer roots because f(n) ≥ 1 for
n ≥ 0 and f(n) ≤ −1 for n < 0. So f is irreducible in Z[x] and thence in
Q[x].

(ii) f = x3 + x + 1 is not irreducible in R[x] because f(−1) = −1 and f(0) = 1
so, by the intermediate value theorem, there must be a root in (−1, 0) and
thus a factor.
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5. A homomorphism θ : Z/12Z → Z/12Z is determined uniquely by spec-
ifying θ(1). Moreover we can specify any θ(1) = k ∈ Z/12Z: the resulting map
θ(n) = kn is a homomorphism because

θ(m + n) = k(m + n) = km + kn = θ(m) + θ(n).

So there are 12 homomorphisms: θ(n) = kn for k = 0, 1, 2, . . . , 11. These are
clearly all different since the image of 1 is different in each case.

Here is a list of the kernels and images:

θ ker θ im θ
n 7→ 0 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} {0}
n 7→ n {0} {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
n 7→ 2n {0, 6} {0, 2, 4, 6, 8, 10}
n 7→ 3n {0, 4, 8} {0, 3, 6, 9}
n 7→ 4n {0, 3, 6, 9} {0, 4, 8}
n 7→ 5n {0} {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
n 7→ 6n {0, 2, 4, 6, 8, 10} {0, 6}
n 7→ 7n {0} {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
n 7→ 8n {0, 3, 6, 9} {0, 4, 8}
n 7→ 9n {0, 4, 8} {0, 3, 6, 9}
n 7→ 10n {0, 6} {0, 2, 4, 6, 8, 10}
n 7→ 11n {0} {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

(Note that, as Lagrange’s theorem guarantees, the kernel and image always have
size dividing 12 and, as the first isomorphism theorem guarantees, the product
of their sizes is always 12.)

From the table there are 4 isomorphisms θ(n) = kn for k = 1, 5, 7 and 11, i.e.
for those values of k which are coprime to 12.
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6. We use the Euclidean algorithm. Let α = 2 − 5i and β = 2 + 2i and
consider the augmented matrix(

1 0 2− 5i
0 1 2 + 2i

)
R1+iR2−→

(
1 i −3i
0 1 2 + 2i

)
R1+R2−→

(
1 1 + i 2− i
0 1 2 + 2i

)
R2−iR1−→

(
1 1 + i 2− i
−i 2− i 1

)

Since we clearly obtain a 0 in the top right entry at the next stage

gcd(2− 5i, 2 + 2i) = 1 = (2− i)β − iα.

(It would also be possible, and admissible, to find the gcd by using the norm:
N(2 − 5i) = 29 and N(2 + 2i) = 8 and since these have no common factors
gcd(2 − 5i, 2 + 2i) = 1. However we would then need to use the Euclidean
algorithm to write the gcd as a linear combination of 2− 5i and 2 + 2i.)
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SECTION B

7. A homomorphism of abelian groups is a map θ : A → B such that
θ(a + a′) = θ(a) + θ(a′) for all a, a′ ∈ A.

A homomorphism of rings is a map θ : R → S such that θ(r+r′) = θ(r)+θ(r′)
and θ(rr′) = θ(r)θ(r′) for all r, r′ ∈ R. Furthermore we require that θ(1) = 1.
(In particular it is a homomorphism of the underlying additive abelian groups.)

(i) ϕ : Z → Z : m 7→ 2m is a homomorphism of abelian groups because ϕ(m+
n) = 2(m + n) = 2m + 2n = ϕ(m) + ϕ(n). It is not a ring homomorphism
because, e.g. ϕ(2 · 3) = 12 6= 4 · 6 = ϕ(2)ϕ(3).

(ii) ϕ : Z → Z : m 7→ m3 is not a homomorphism of abelian groups, and
therefore not a ring homomorphism either. This is because, e.g. ϕ(1+1) =
23 = 8 6= 1 + 1 = ϕ(1) + ϕ(1).

(iii) ϕ : (Z/3Z)[x] → (Z/3Z)[x] : f 7→ f 3 is a homomorphism of rings, and
therefore a homomorphism of abelian groups too. This is because, ϕ(a+b) =
(a+ b)3 = a3 +3a2b+3ab2 + b3 = a3 + b3 = ϕ(a)+ϕ(b) and ϕ(ab) = (ab)3 =
a3b3 = ϕ(a)ϕ(b).

(iv) ϕ : Z[x] → C : f 7→ f(1 + i) is a homomorphism of rings, and therefore a
homomorphism of abelian groups too. This is easy to check, or we can quote
the result that evaluation maps of this kind are always homomorphisms.

8. A prime ideal I of a ring R is an ideal (an additive subgroup closed under
multiplication by an arbitrary element of R) with the additional property that
rs ∈ I implies either r ∈ I or s ∈ I.

(i) 6Z is an ideal in Z but it is not prime, e.g. 2 · 3 = 6 ∈ 6Z but neither 2 nor
3 is in 6Z.

(ii) 13Z is a prime ideal in Z: if mn ∈ 13Z then 13|mn so 13|m or 13|n (because
13 is prime), i.e. either m ∈ 13Z or n ∈ 13Z.

(iii) I = {f ∈ Q[x] | f(8) = 0} is a prime ideal in Q[x]: if fg ∈ I then
0 = (fg)(8) = f(8)g(8) so either f(8) = 0 or g(8) = 0, i.e. either f ∈ I or
g ∈ I.

(iv) I = 〈x2 + 1〉 is not a prime ideal in C[x] because, e.g. (x + i)(x − i) =
x2 + 1 ∈ I but neither of x± i is in I as they are not multiples of x2 + 1.
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9.

(i) The possible tables of factors, p-primary and Smith Normal Form decom-
positions for an abelian group of size 45 = 32 × 5 are listed below. There
are two possible tables, and so two isomorphism classes of abelian groups
of size 45.

Table of factors P-primary decomp SNF decomp

0 2 3 5

9 5
Z/9Z⊕ Z/5Z Z/45Z

0 2 3 5

3 5
3

Z/3Z⊕ Z/3Z⊕ Z/5Z Z/15Z⊕ Z/3Z

(ii) The possible tables of factors, p-primary and Smith Normal Form decom-
positions for an abelian group of size 72 = 32 × 23 are listed below. There
are six possible tables, and so six isomorphism classes of abelian groups of
size 72.
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Table of factors P-primary decomp SNF decomp

0 2 3

8 9
Z/8Z⊕ Z/9Z Z/72Z

0 2 3

4 9
2

Z/4Z⊕ Z/2Z⊕ Z/9Z Z/36Z⊕ Z/2Z

0 2 3

2 9
2
2

Z/2Z⊕ Z/2Z⊕ Z/2Z⊕ Z/9Z Z/18Z⊕ Z/2Z⊕ Z/2Z

0 2 3

8 3
3

Z/8Z⊕ Z/3Z⊕ Z/3Z Z/24Z⊕ Z/3Z

0 2 3

4 3
2 3

Z/4Z⊕ Z/2Z⊕ Z/3Z⊕ Z/3Z Z/12Z⊕ Z/6Z

0 2 3

2 3
2 3
2

Z/2Z⊕ Z/2Z⊕ Z/2Z⊕ Z/3Z⊕ Z/3Z Z/6Z⊕ Z/6Z⊕ Z/2Z
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10. We can easily check that f = x4 + x + 1 has no roots in Z/2Z since
f(0) = 1 = f(1) so the only possible factorisation is of the form

f = (x2 + ax + 1)(x2 + bx + 1) = x4 + (a + b)x3 + abx2 + (a + b)x + 1.

This is impossible as comparing coefficients of x and x3 gives 0 = a + b = 1.
Hence f is irreducible in R = (Z/2Z)[x].

(i) The number of elements in the quotient ring R/I where I = 〈f〉 is
24 = 16 and the number of elements in the group of units (R/I)∗ is 16− 1 = 15.
The possible orders of elements in (R/I)∗ are the divisors of 15 namely 1, 3, 5 and
15.

(ii) It is clear that x 6= 1 and x3 6= 1. Since x5 = x4 · x = (x + 1)x =
x2 + x 6= 1 we deduce that x must have the only other possible order, namely
15.

(iii) The element 1 has order 1. The element x5 = x2 + x has order 3:
certainly (x5)3 = x15 = 1 and since x3 and (x3)3 = x9 are not 1 this shows x3 has
order 5. A similar argument shows x5 has order 3. Finally x has order 15.
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11. (i) Bézout’s theorem for the ring Q[x] states that if f, g ∈ Q[x] then
we can find a, b ∈ Q[x] with

af + bg = gcd(f, g).

Elements of the quotient are represented by polynomials g ∈ Q[x] with
deg g < deg f . If f is irreducible in Q[x] and g 6= 0 then gcd(f, g) = 1 for
any such g. By Bézout’s theorem we can find a, b ∈ Q[x] with

af + bg = 1.

Hence bg = 1 ∈ Q[x]/〈f〉 so that (the class of ) b is a multiplicative inverse for
(the class of) g. Since every element of the quotient has a multiplicative inverse
Q[x]/〈f〉 is a field.

(ii)

(a) We apply the Euclidean algorithm to f = x3 + x + 1 and g = x2 + 1. The
first step is

f = xg + 1

so we see that f − xg = 1, i.e. xg = 1 in Q[x]/〈x3 + x + 1〉.

(b) We apply the Euclidean algorithm to f = x3 + x2 + 1 and g = x2 + 1. We
get

f = (x + 1)g − x

g = (−x)(−x) + 1

Rearranging we have

1 = g − (−x)(−x) = g + x(f − (x + 1)g) = xf − (x2 + x− 1))g

so the multiplicative inverse of (the class of) g in Q[x]/〈x3 + x2 + 1〉 is (the
class of) 1− x− x2.
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