MATH 247

Examiner: Dr. J. Woolf, Extension 44052.

Time allowed: Two and a half hours

Answer all of Section A and THREE questions from Section B. The marks shown against questions, or parts of questions, indicate their relative weight. Section A carries 55% of the available marks.

SECTION A

1. Give a description of those integers n for which there is a finite field with n elements. For each of the following numbers decide if there is a finite field with that many elements and, if there is a finite field with that any elements, give an example. (You should briefly justify your answer but are NOT required to go into details.)
(i) 19 ,
(ii) 54 ,
(iii) 9 .
2. Decide whether or not the abelian groups

$$
A=\langle a, b \mid 4 a+6 b, 3 a+3 b\rangle \quad \text { and } \quad B=\langle a, b, c \mid a+3 c, b-4 c, 2 b-2 c\rangle
$$

(given in terms of generators and relations) are isomorphic. To obtain full marks you should justify your answer.
3. Let R be a commutative ring with identity. Say what is meant by a unit in R. In each of the following cases say whether the element r is a unit in the ring R. To obtain full marks you should justify your answers.
(i) $R=\mathbf{Q}, r=3$,
(ii) $R=\mathbf{Z} / 6 \mathbf{Z}, r=3$,
(iii) $R=\mathbf{Z} / 8 \mathbf{Z}, r=3$,
(iv) $R=\mathbf{Z}[x], r=x^{2}$,
(v) $R=\mathbf{Z}[i], r=1-i$.
4. Let R be a commutative ring with identity. Say what is meant by an irreducible element of R. In each of the following cases say whether the polynomial $f=x^{3}+x+1$ is irreducible in the ring R. Justify your answers.
(i) $R=(\mathbf{Z} / 5 \mathbf{Z})[x]$,
(ii) $R=\mathbf{Q}[x]$,
(ii) $R=\mathbf{R}[x]$.
5. Find all the homomorphisms of abelian groups $\theta: \mathbf{Z} / 12 \mathbf{Z} \rightarrow \mathbf{Z} / 12 \mathbf{Z}$. For each homomorphism find the kernel and the image and hence decide whether or not it is an isomorphism.
6. Find the greatest common divisor $\operatorname{gcd}(\alpha, \beta)$ in $\mathbf{Z}[i]$ of $\alpha=2-5 i$ and $\beta=2+2 i$. Also find Gaussian integers $\gamma, \delta \in \mathbf{Z}[i]$ with

$$
\operatorname{gcd}(\alpha, \beta)=\alpha \gamma+\beta \delta
$$

[10 marks]

SECTION B

7. Give the definition of a homomorphism of abelian groups. Give the definition of a homomorphism of rings. (Here 'rings' should be taken to mean commutative rings with multiplicative identity.)

For each map φ below decide whether it is (a) a homomorphism of abelian groups (where the abelian group structure is given by addition) and (b) a homomorphism of rings. You should give brief justifications of your answers.
(i) $\varphi: \mathbf{Z} \rightarrow \mathbf{Z}: m \mapsto 2 m$,
(ii) $\varphi: \mathbf{Z} \rightarrow \mathbf{Z}: m \mapsto m^{3}$,
(iii) $\varphi:(\mathbf{Z} / 3 \mathbf{Z})[x] \rightarrow(\mathbf{Z} / 3 \mathbf{Z})[x]: f \mapsto f^{3}$,
(iv) $\varphi: \mathbf{Z}[x] \rightarrow \mathbf{C}: f \mapsto f(1+i)$.
[15 marks]
8. Say what is meant by a prime ideal of a ring R. In each case below, decide whether the ideal I of the ring R is prime or not. To obtain full marks you should justify your answers.
(i) $I=6 \mathbf{Z}$ and $R=\mathbf{Z}$,
(ii) $I=13 \mathbf{Z}$ and $R=\mathbf{Z}$,
(iii) $I=\{f \in \mathbf{Q}[x] \mid f(8)=0\}$ and $R=\mathbf{Q}[x]$.
(iv) $I=\left\langle x^{2}+1\right\rangle$ and $R=\mathbf{C}[x]$.
[15 marks]
9. For each n below, find all the abelian groups (up to isomorphism) of size n. For each isomorphism class you find give the table of factors, and the p-primary and Smith normal form decompositions of the group.
(i) $n=45$;
(ii) $n=72$.
[15 marks]
10. Let $R=(\mathbf{Z} / 2 \mathbf{Z})[x]$ and let $I \subset R$ be the ideal generated by

$$
f=x^{4}+x+1
$$

Show that f is irreducible in R.
(i) Write down the number of elements in the quotient ring R / I and the number of elements in $(R / I)^{*}$. State the possible orders of elements in $(R / I)^{*}$.
(ii) Find the order of the element x in $(R / I)^{*}$.
(iii) Give an example of an element of each possible order in $(R / I)^{*}$.
[15 marks]
11. (a) State Bézout's theorem for the ring $\mathbf{Q}[x]$. Explain briefly why the quotient ring $\mathbf{Q}[x] /\langle f\rangle$ is a field if $f \in \mathbf{Q}[x]$ is irreducible. [6 marks]
(b) Use the Euclidean algorithm to find a multiplicative inverse for $x^{2}+1$ in each of the quotient rings
(a) $\mathbf{Q}[x] /\left\langle x^{3}+x+1\right\rangle$ and,
(b) $\mathbf{Q}[x] /\left\langle x^{3}+x^{2}+1\right\rangle$.
[9 marks]

